IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282231.html
   My bibliography  Save this article

Prediction of cost and schedule performance in post-hurricane reconstruction of transportation infrastructure

Author

Listed:
  • Elnaz Safapour
  • Sharareh Kermanshachi
  • Behzad Rouhanizadeh

Abstract

This study aimed to develop predictive models that could be used to estimate the cost and schedule performance of reconstruction of transportation infrastructure damaged by hurricanes and to determine the predictors that are robustly connected to the developed models. Stepwise multiple linear regression and extreme bound analysis (EBA) were used to develop the models and determine the robust and fragile predictors, respectively. The results demonstrated that seven cost performance predictors and nine schedule performance predictors accounted for Adjusted R-Squared of 92.4% and 99.2%, respectively. The results of the EBA revealed that four cost and seven performance predictors were robustly connected to the developed cost and schedule performance predictive models. It was concluded that increases in laborers’ wages, the number of inspections, information and data management, and addressing safety and environmental issues prior to a project’s execution were predictors of both the cost and schedule performance of reconstruction projects. The outcomes of this study provide knowledge and information that will be helpful to decision-makers who are responsible for mitigating delays and cost overruns, and effectively allocating their limited resources available following a disaster.

Suggested Citation

  • Elnaz Safapour & Sharareh Kermanshachi & Behzad Rouhanizadeh, 2023. "Prediction of cost and schedule performance in post-hurricane reconstruction of transportation infrastructure," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-24, March.
  • Handle: RePEc:plo:pone00:0282231
    DOI: 10.1371/journal.pone.0282231
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282231
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282231&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Levine, Ross & Renelt, David, 1992. "A Sensitivity Analysis of Cross-Country Growth Regressions," American Economic Review, American Economic Association, vol. 82(4), pages 942-963, September.
    2. Jennifer Duyne Barenstein & Abhas K. Jha & Priscilla M. Phelps & Daniel Pittet & Stephen Sena, 2010. "Safer Homes, Stronger Communities : A Handbook for Reconstructing after Natural Disasters," World Bank Publications - Books, The World Bank Group, number 2409, April.
    3. Melisa Chanegriha & Chris Stewart & Christopher Tsoukis, 2017. "Identifying the robust economic, geographical and political determinants of FDI: an Extreme Bounds Analysis," Empirical Economics, Springer, vol. 52(2), pages 759-776, March.
    4. Lili Du & Srinivas Peeta, 2014. "A Stochastic Optimization Model to Reduce Expected Post-Disaster Response Time Through Pre-Disaster Investment Decisions," Networks and Spatial Economics, Springer, vol. 14(2), pages 271-295, June.
    5. Armstrong, J. Scott, 2011. "Illusions in Regression Analysis," MPRA Paper 81663, University Library of Munich, Germany.
    6. Sala-i-Martin, Xavier, 1997. "I Just Ran Two Million Regressions," American Economic Review, American Economic Association, vol. 87(2), pages 178-183, May.
    7. Leamer, Edward E & Leonard, Herman B, 1983. "Reporting the Fragility of Regression Estimates," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 306-317, May.
    8. Leamer, Edward E, 1985. "Sensitivity Analyses Would Help," American Economic Review, American Economic Association, vol. 75(3), pages 308-313, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oasis Kodila-Tedika & Simplice Asongu & Florentin Azia-Dimbu, 2016. "The Sensitive Nature of Social Trust to Intelligence," Working Papers of the African Governance and Development Institute. 16/005, African Governance and Development Institute..
    2. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    3. Guo, Li-Yang & Feng, Chao & Yang, Jun, 2022. "Can energy predict the regional prices of carbon emission allowances in China?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Hauck, K. & Martin, S. & Smith, P.C., 2016. "Priorities for action on the social determinants of health: Empirical evidence on the strongest associations with life expectancy in 54 low-income countries, 1990–2012," Social Science & Medicine, Elsevier, vol. 167(C), pages 88-98.
    5. Danila Serra, 2006. "Empirical determinants of corruption: A sensitivity analysis," Public Choice, Springer, vol. 126(1), pages 225-256, January.
    6. Yang, Haisheng & He, Jie & Chen, Shaoling, 2015. "The fragility of the Environmental Kuznets Curve: Revisiting the hypothesis with Chinese data via an “Extreme Bound Analysis”," Ecological Economics, Elsevier, vol. 109(C), pages 41-58.
    7. Neil R. Ericsson, 2008. "The Fragility of Sensitivity Analysis: An Encompassing Perspective," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 895-914, December.
    8. Tjeerd M. Boonman & Andrea E. Sanchez Urbina, 2020. "Extreme Bounds Analysis in Early Warning Systems for Currency Crises," Open Economies Review, Springer, vol. 31(2), pages 431-470, April.
    9. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    10. Melisa Chanegriha & Chris Stewart & Christopher Tsoukis, 2017. "Identifying the robust economic, geographical and political determinants of FDI: an Extreme Bounds Analysis," Empirical Economics, Springer, vol. 52(2), pages 759-776, March.
    11. Muhammad Zubair Mumtaz & Zachary A. Smith & Ather Maqsood Ahmed, 2016. "An examination of short-run performance of IPOs using Extreme Bounds Analysis," Estudios de Economia, University of Chile, Department of Economics, vol. 43(1 Year 20), pages 71-95, June.
    12. R Burger & S du Plessis, 2011. "Examining the Robustness of Competing Explanations of Slow Growth in African Countries," Studies in Economics and Econometrics, Taylor & Francis Journals, vol. 35(3), pages 21-47, December.
    13. Kelly M. Kadera & Sara McLaughlin Mitchell, 2005. "Heeding Ray's Advice: An Exegesis on Control Variables in Systemic Democratic Peace Research," Conflict Management and Peace Science, Peace Science Society (International), vol. 22(4), pages 311-326, September.
    14. Martin Gassebner & Jerg Gutmann & Stefan Voigt, 2016. "When to expect a coup d’état? An extreme bounds analysis of coup determinants," Public Choice, Springer, vol. 169(3), pages 293-313, December.
    15. C. Alper & S. Cakici, 2009. "Financial Liberalization, Fiscal Prudence and Growth: Panel Evidence from 1980–2003," Open Economies Review, Springer, vol. 20(4), pages 509-524, September.
    16. Beck, Krzysztof & Wyszyński, Mateusz & Dubel, Marcin, 2025. "Bayesian dynamic systems modelling. Bayesian model averaging for dynamic panels with weakly exogenous regressors," MPRA Paper 124689, University Library of Munich, Germany.
    17. Klump, R. & Prüfer, P., 2006. "Prioritizing Policies for Pro-Poor Growth : Applying Bayesian Model Averaging to Vietnam," Other publications TiSEM dc14add6-f581-4eea-92dd-3, Tilburg University, School of Economics and Management.
    18. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    19. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    20. Wang, Xinya & Lucey, Brian & Huang, Shupei, 2022. "Can gold hedge against oil price movements: Evidence from GARCH-EVT wavelet modeling," Journal of Commodity Markets, Elsevier, vol. 27(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.