IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0270553.html
   My bibliography  Save this article

Machine learning techniques for forecasting agricultural prices: A case of brinjal in Odisha, India

Author

Listed:
  • Ranjit Kumar Paul
  • Md Yeasin
  • Pramod Kumar
  • Prabhakar Kumar
  • M Balasubramanian
  • H S Roy
  • A K Paul
  • Ajit Gupta

Abstract

Background: Price forecasting of perishable crop like vegetables has importance implications to the farmers, traders as well as consumers. Timely and accurate forecast of the price helps the farmers switch between the alternative nearby markets to sale their produce and getting good prices. The farmers can use the information to make choices around the timing of marketing. For forecasting price of agricultural commodities, several statistical models have been applied in past but those models have their own limitations in terms of assumptions. Methods: In recent times, Machine Learning (ML) techniques have been much successful in modeling time series data. Though, numerous empirical studies have shown that ML approaches outperform time series models in forecasting time series, but their application in forecasting vegetables prices in India is scared. In the present investigation, an attempt has been made to explore efficient ML algorithms e.g. Generalized Neural Network (GRNN), Support Vector Regression (SVR), Random Forest (RF) and Gradient Boosting Machine (GBM) for forecasting wholesale price of Brinjal in seventeen major markets of Odisha, India. Results: An empirical comparison of the predictive accuracies of different models with that of the usual stochastic model i.e. Autoregressive integrated moving average (ARIMA) model is carried out and it is observed that ML techniques particularly GRNN performs better in most of the cases. The superiority of the models is established by means of Model Confidence Set (MCS), and other accuracy measures such as Mean Error (ME), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Prediction Error (MAPE). To this end, Diebold-Mariano test is performed to test for the significant differences in predictive accuracy of different models. Conclusions: Among the machine learning techniques, GRNN performs better in all the seventeen markets as compared to other techniques. RF performs at par with GRNN in four markets. The accuracies of other techniques such as SVR, GBM and ARIMA are not up to the mark.

Suggested Citation

  • Ranjit Kumar Paul & Md Yeasin & Pramod Kumar & Prabhakar Kumar & M Balasubramanian & H S Roy & A K Paul & Ajit Gupta, 2022. "Machine learning techniques for forecasting agricultural prices: A case of brinjal in Odisha, India," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-17, July.
  • Handle: RePEc:plo:pone00:0270553
    DOI: 10.1371/journal.pone.0270553
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270553
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0270553&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0270553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mauro Bernardi & Leopoldo Catania, 2014. "The Model Confidence Set package for R," Papers 1410.8504, arXiv.org.
    2. Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
    3. Marcel Fafchamps & Bart Minten, 2012. "Impact of SMS-Based Agricultural Information on Indian Farmers," The World Bank Economic Review, World Bank, vol. 26(3), pages 383-414.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Georgios Sermpinis & Charalampos Stasinakis & Konstantinos Theofilatos & Andreas Karathanasopoul, 2014. "Inflation and Unemployment Forecasting with Genetic Support Vector Regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 471-487, September.
    6. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    7. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    8. Paul, Ranjit Kumar & Panwar, Sanjeev & Sarkar, Susheel Kumar & Kumar, Anil & Singh, K.N. & Farooqi, Samir & Choudhary, Vipin Kumar, 2013. "Modelling and Forecasting of Meat Exports from India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 26(2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Goulet Coulombe, 2020. "To Bag is to Prune," Papers 2008.07063, arXiv.org, revised Sep 2024.
      • Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    5. Lalou Panagiota & Ponis Stavros T. & Efthymiou Orestis K., 2020. "Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming," Management & Marketing, Sciendo, vol. 15(2), pages 186-202, June.
    6. Silvia Muzzioli & Luca Gambarelli & Bernard De Baets, 2018. "Indices for Financial Market Volatility Obtained Through Fuzzy Regression," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1659-1691, November.
    7. Štefan Lyócsa & Peter Molnár, 2016. "Volatility forecasting of strategically linked commodity ETFs: gold-silver," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1809-1822, December.
    8. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    9. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    10. Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    12. Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
    13. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    14. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    15. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
    16. Niko Hauzenberger & Florian Huber & Luca Onorante, 2021. "Combining shrinkage and sparsity in conjugate vector autoregressive models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 304-327, April.
    17. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    18. Philippe Goulet Coulombe, 2021. "Slow-Growing Trees," Papers 2103.01926, arXiv.org, revised Jul 2021.
      • Philippe Goulet Coulombe, 2021. "Slow-Growing Trees," Working Papers 21-02, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    19. Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
    20. Mekelburg, Erik & Strauss, Jack, 2024. "Pooling and winsorizing machine learning forecasts to predict stock returns with high-dimensional data," Journal of Empirical Finance, Elsevier, vol. 79(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.