IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259874.html
   My bibliography  Save this article

Assessing the impact of non-pharmaceutical interventions (NPI) on the dynamics of COVID-19: A mathematical modelling study of the case of Ethiopia

Author

Listed:
  • Bedilu Alamirie Ejigu
  • Manalebish Debalike Asfaw
  • Lisa Cavalerie
  • Tilahun Abebaw
  • Mark Nanyingi
  • Matthew Baylis

Abstract

The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020 and by November 14, 2020 there were 53.3M confirmed cases and 1.3M reported deaths in the world. In the same period, Ethiopia reported 102K cases and 1.5K deaths. Effective public health preparedness and response to COVID-19 requires timely projections of the time and size of the peak of the outbreak. Currently, Ethiopia under the COVAX facility has begun vaccinating high risk populations but due to vaccine supply shortages and the absence of an effective treatment, the implementation of NPIs (non-pharmaceutical interventions), like hand washing, wearing face coverings or social distancing, still remain the most effective methods of controlling the pandemic as recommended by WHO. This study proposes a modified Susceptible Exposed Infected and Recovered (SEIR) model to predict the number of COVID-19 cases at different stages of the disease under the implementation of NPIs at different adherence levels in both urban and rural settings of Ethiopia. To estimate the number of cases and their peak time, 30 different scenarios were simulated. The results indicated that the peak time of the pandemic is different in urban and rural populations of Ethiopia. In the urban population, under moderate implementation of three NPIs the pandemic will be expected to reach its peak in December, 2020 with 147,972 cases, of which 18,100 are symptomatic and 957 will require admission to an Intensive Care Unit (ICU). Among the implemented NPIs, increasing the coverage of wearing masks by 10% could reduce the number of new cases on average by one-fifth in urban-populations. Varying the coverage of wearing masks in rural populations minimally reduces the number of cases. In conclusion, the models indicate that the projected number of hospital cases during the peak time is higher than the Ethiopian health system capacity. To contain symptomatic and ICU cases within the health system capacity, the government should pay attention to the strict implementation of the existing NPIs or impose additional public health measures.

Suggested Citation

  • Bedilu Alamirie Ejigu & Manalebish Debalike Asfaw & Lisa Cavalerie & Tilahun Abebaw & Mark Nanyingi & Matthew Baylis, 2021. "Assessing the impact of non-pharmaceutical interventions (NPI) on the dynamics of COVID-19: A mathematical modelling study of the case of Ethiopia," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0259874
    DOI: 10.1371/journal.pone.0259874
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259874
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259874&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baye, Kaleab, 2020. "COVID-19 prevention measures in Ethiopia: Current realities and prospects," ESSP working papers 142, International Food Policy Research Institute (IFPRI).
    2. Kassa, Semu M. & Njagarah, John B.H. & Terefe, Yibeltal A., 2020. "Analysis of the mitigation strategies for COVID-19: From mathematical modelling perspective," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Colin J. Worby & Hsiao-Han Chang, 2020. "Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nattavudh Powdthavee & Yohanes E Riyanto & Erwin C L Wong & Jonathan X W Yeo & Qi Yu Chan, 2021. "When face masks signal social identity: Explaining the deep face-mask divide during the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-15, June.
    2. Nikhil Agarwal & Andrew Komo & Chetan A. Patel & Parag A. Pathak & M. Utku Ünver, 2021. "The Trade-off Between Prioritization and Vaccination Speed Depends on Mitigation Measures," NBER Working Papers 28519, National Bureau of Economic Research, Inc.
    3. Hubert, Philipp & Abdel Hadi, Sascha & Mojzisch, Andreas & Häusser, Jan Alexander, 2022. "The effects of organizational climate on adherence to guidelines for COVID-19 prevention," Social Science & Medicine, Elsevier, vol. 292(C).
    4. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Abdulnasir Abagero & Luca Ragazzoni & Ives Hubloue & Francesco Barone-Adesi & Hamdi Lamine & Adamu Addissie & Francesco Della Corte & Martina Valente, 2022. "A Review of COVID-19 Response Challenges in Ethiopia," IJERPH, MDPI, vol. 19(17), pages 1-13, September.
    6. Aspri, Andrea & Beretta, Elena & Gandolfi, Alberto & Wasmer, Etienne, 2021. "Mortality containment vs. Economics Opening: Optimal policies in a SEIARD model," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    7. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    8. Bo Zhang & Zhongjie Li & Lei Jiang, 2021. "The Intentions to Wear Face Masks and the Differences in Preventive Behaviors between Urban and Rural Areas during COVID-19: An Analysis Based on the Technology Acceptance Model," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    9. Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.
    10. Ndenda, J.P. & Njagarah, J.B.H. & Shaw, S., 2021. "Role of immunotherapy in tumor-immune interaction: Perspectives from fractional-order modelling and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Kate M. Bubar & Casey E. Middleton & Kristen K. Bjorkman & Roy Parker & Daniel B. Larremore, 2022. "SARS-CoV-2 transmission and impacts of unvaccinated-only screening in populations of mixed vaccination status," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Braden Leap & Kimberly Kelly & Marybeth C. Stalp, 2022. "Choreographing social reproduction: Making personal protective equipment and gender during a neoliberal pandemic," Gender, Work and Organization, Wiley Blackwell, vol. 29(3), pages 758-777, May.
    13. Hizkel Asfaw & Shankar Karuppannan & Tilahun Erduno & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motrih Al-Mutiry & Hazem Ghassan Abdo, 2022. "Evaluation of Vulnerability Status of the Infection Risk to COVID-19 Using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): A Case Study of Addis Ababa City, Ethiopia," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    14. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    15. Jos Lelieveld & Frank Helleis & Stephan Borrmann & Yafang Cheng & Frank Drewnick & Gerald Haug & Thomas Klimach & Jean Sciare & Hang Su & Ulrich Pöschl, 2020. "Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    16. Njagarah, John B.H. & Nyabadza, Farai & Kgosimore, Moatlhodi & Hui, Cang, 2021. "Significance of antiviral therapy and CTL-mediated immune response in containing hepatitis B and C virus infection," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    17. Toshikazu Kuniya, 2021. "Structure of epidemic models: toward further applications in economics," The Japanese Economic Review, Springer, vol. 72(4), pages 581-607, October.
    18. Baloch, Gohram & Gzara, Fatma & Elhedhli, Samir, 2023. "Risk-based allocation of COVID-19 personal protective equipment under supply shortages," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1085-1100.
    19. Terefe, Y.A. & Njagarah, J.B.H. & Kassa, S.M., 2023. "Effect of cross-border migration on the healthcare system of a destination community: Insights from mathematical modelling of COVID-19 in a developing country," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 444-479.
    20. Daisuke Fujii & Taisuke Nakata & Takeshi Ojima, 2022. "Heterogeneous Risk Attitudes and Waves of Infection," CARF F-Series CARF-F-546, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.