IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0233951.html
   My bibliography  Save this article

Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models

Author

Listed:
  • Yusuke Toda
  • Hitomi Wakatsuki
  • Toru Aoike
  • Hiromi Kajiya-Kanegae
  • Masanori Yamasaki
  • Takuma Yoshioka
  • Kaworu Ebana
  • Takeshi Hayashi
  • Hiroshi Nakagawa
  • Toshihiro Hasegawa
  • Hiroyoshi Iwata

Abstract

Genomic prediction (GP) is expected to become a powerful technology for accelerating the genetic improvement of complex crop traits. Several GP models have been proposed to enhance their applications in plant breeding, including environmental effects and genotype-by-environment interactions (G×E). In this study, we proposed a two-step model for plant biomass prediction wherein environmental information and growth-related traits were considered. First, the growth-related traits were predicted by GP. Second, the biomass was predicted from the GP-predicted values and environmental data using machine learning or crop growth modeling. We applied the model to a 2-year-old field trial dataset of recombinant inbred lines of japonica rice and evaluated the prediction accuracy with training and testing data by cross-validation performed over two years. Therefore, the proposed model achieved an equivalent or a higher correlation between the observed and predicted values (0.53 and 0.65 for each year, respectively) than the model in which biomass was directly predicted by GP (0.40 and 0.65 for each year, respectively). This result indicated that including growth-related traits enhanced accuracy of biomass prediction. Our findings are expected to contribute to the spread of the use of GP in crop breeding by enabling more precise prediction of environmental effects on crop traits.

Suggested Citation

  • Yusuke Toda & Hitomi Wakatsuki & Toru Aoike & Hiromi Kajiya-Kanegae & Masanori Yamasaki & Takuma Yoshioka & Kaworu Ebana & Takeshi Hayashi & Hiroshi Nakagawa & Toshihiro Hasegawa & Hiroyoshi Iwata, 2020. "Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0233951
    DOI: 10.1371/journal.pone.0233951
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233951
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0233951&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0233951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Technow & Carlos D Messina & L Radu Totir & Mark Cooper, 2015. "Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
    2. Pinnschmidt, H. O. & Batchelor, W. D. & Teng, P. S., 1995. "Simulation of multiple species pest damage in rice using CERES-rice," Agricultural Systems, Elsevier, vol. 48(2), pages 193-222.
    3. Timsina, J. & Humphreys, E., 2006. "Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review," Agricultural Systems, Elsevier, vol. 90(1-3), pages 5-31, October.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Jennifer Spindel & Hasina Begum & Deniz Akdemir & Parminder Virk & Bertrand Collard & Edilberto Redoña & Gary Atlin & Jean-Luc Jannink & Susan R McCouch, 2015. "Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic," PLOS Genetics, Public Library of Science, vol. 11(2), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allimuthu Elangovan & Nguyen Trung Duc & Dhandapani Raju & Sudhir Kumar & Biswabiplab Singh & Chandrapal Vishwakarma & Subbaiyan Gopala Krishnan & Ranjith Kumar Ellur & Monika Dalal & Padmini Swain & , 2023. "Imaging Sensor-Based High-Throughput Measurement of Biomass Using Machine Learning Models in Rice," Agriculture, MDPI, vol. 13(4), pages 1-22, April.
    2. Jugurta Bouidghaghen & Laurence Moreau & Katia Beauchêne & Romain Chapuis & Nathalie Mangel & Llorenç Cabrera‐Bosquet & Claude Welcker & Matthieu Bogard & François Tardieu, 2023. "Robotized indoor phenotyping allows genomic prediction of adaptive traits in the field," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    3. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    4. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    7. M. Sujithra & Subhash Chander, 2013. "Simulation of rice brown planthopper, Nilaparvata lugens (Stal.) population and crop-pest interactions to assess climate change impact," Climatic Change, Springer, vol. 121(2), pages 331-347, November.
    8. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    9. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    10. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    11. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    12. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    13. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    14. Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
    15. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    16. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    18. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    19. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    20. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0233951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.