IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42298-z.html
   My bibliography  Save this article

Robotized indoor phenotyping allows genomic prediction of adaptive traits in the field

Author

Listed:
  • Jugurta Bouidghaghen

    (LEPSE, Univ Montpellier, INRAE
    ARVALIS, Chemin de la côte vieille)

  • Laurence Moreau

    (Université Paris-Saclay)

  • Katia Beauchêne

    (ARVALIS, 45 Voie Romaine, Ouzouer-Le-Marché)

  • Romain Chapuis

    (DIASCOPE, Univ Montpellier, INRAE)

  • Nathalie Mangel

    (ARVALIS, Station de recherche et d’expérimentation)

  • Llorenç Cabrera‐Bosquet

    (LEPSE, Univ Montpellier, INRAE)

  • Claude Welcker

    (LEPSE, Univ Montpellier, INRAE)

  • Matthieu Bogard

    (ARVALIS, Chemin de la côte vieille)

  • François Tardieu

    (LEPSE, Univ Montpellier, INRAE)

Abstract

Breeding for resilience to climate change requires considering adaptive traits such as plant architecture, stomatal conductance and growth, beyond the current selection for yield. Robotized indoor phenotyping allows measuring such traits at high throughput for speed breeding, but is often considered as non-relevant for field conditions. Here, we show that maize adaptive traits can be inferred in different fields, based on genotypic values obtained indoor and on environmental conditions in each considered field. The modelling of environmental effects allows translation from indoor to fields, but also from one field to another field. Furthermore, genotypic values of considered traits match between indoor and field conditions. Genomic prediction results in adequate ranking of genotypes for the tested traits, although with lesser precision for elite varieties presenting reduced phenotypic variability. Hence, it distinguishes genotypes with high or low values for adaptive traits, conferring either spender or conservative strategies for water use under future climates.

Suggested Citation

  • Jugurta Bouidghaghen & Laurence Moreau & Katia Beauchêne & Romain Chapuis & Nathalie Mangel & Llorenç Cabrera‐Bosquet & Claude Welcker & Matthieu Bogard & François Tardieu, 2023. "Robotized indoor phenotyping allows genomic prediction of adaptive traits in the field," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42298-z
    DOI: 10.1038/s41467-023-42298-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42298-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42298-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claude Welcker & Nadir Abusamra Spencer & Olivier Turc & Italo Granato & Romain Chapuis & Delphine Madur & Katia Beauchene & Brigitte Gouesnard & Xavier Draye & Carine Palaffre & Josiane Lorgeou & Ste, 2022. "Physiological adaptive traits are a potential allele reservoir for maize genetic progress under challenging conditions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Yusuke Toda & Hitomi Wakatsuki & Toru Aoike & Hiromi Kajiya-Kanegae & Masanori Yamasaki & Takuma Yoshioka & Kaworu Ebana & Takeshi Hayashi & Hiroshi Nakagawa & Toshihiro Hasegawa & Hiroyoshi Iwata, 2020. "Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.
    3. Douglas Bonett & Thomas Wright, 2000. "Sample size requirements for estimating pearson, kendall and spearman correlations," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 23-28, March.
    4. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    2. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    3. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    4. Dilshad Ahmad & Muhammad Afzal & Abdur Rauf, 2019. "Analysis of wheat farmers’ risk perceptions and attitudes: evidence from Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 845-861, February.
    5. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    6. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    7. Konrad Prandecki & Edyta Gajos, 2018. "Reductin of greenhouse gases emission and sustainability: The multi-criteria approach," International Conference on Competitiveness of Agro-food and Environmental Economy Proceedings, The Bucharest University of Economic Studies, vol. 7, pages 46-54.
    8. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    9. Gil-Clavel, Sofia & Wagenblast, Thorid & Filatova, Tatiana, 2023. "Farmers’ Incremental and Transformational Climate Change Adaptation in Different Regions: A Natural Language Processing Comparative Literature Review," SocArXiv 3dp5e, Center for Open Science.
    10. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    11. Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
    12. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    13. Angga Pradesha & Sherman Robinson & Mark W. Rosegrant & Nicostrato Perez & Timothy S. Thomas, 2022. "Exploring transformational adaptation strategy through agricultural policy reform in the Philippines," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1435-1447, December.
    14. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    15. Boaventura, Joao Mauricio & Carnaúba, A.A.C. & Todeva, Emanuela & Azevedo, A.C. & Armando, Eduardo, 2016. "Governance Structures and Trust: a Study of Real Estate Networks," MPRA Paper 76785, University Library of Munich, Germany.
    16. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    17. Sven Baehre & Michele O’Dwyer & Lisa O’Malley & Nick Lee, 2022. "The use of Net Promoter Score (NPS) to predict sales growth: insights from an empirical investigation," Journal of the Academy of Marketing Science, Springer, vol. 50(1), pages 67-84, January.
    18. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    19. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    20. Bairagi, Subir & Bhandari, Humnath & Kumar Das, Subrata & Mohanty, Samarendu, 2021. "Flood-tolerant rice improves climate resilience, profitability, and household consumption in Bangladesh," Food Policy, Elsevier, vol. 105(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42298-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.