IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0170007.html
   My bibliography  Save this article

Advantages of Synthetic Noise and Machine Learning for Analyzing Radioecological Data Sets

Author

Listed:
  • Igor Shuryak

Abstract

The ecological effects of accidental or malicious radioactive contamination are insufficiently understood because of the hazards and difficulties associated with conducting studies in radioactively-polluted areas. Data sets from severely contaminated locations can therefore be small. Moreover, many potentially important factors, such as soil concentrations of toxic chemicals, pH, and temperature, can be correlated with radiation levels and with each other. In such situations, commonly-used statistical techniques like generalized linear models (GLMs) may not be able to provide useful information about how radiation and/or these other variables affect the outcome (e.g. abundance of the studied organisms). Ensemble machine learning methods such as random forests offer powerful alternatives. We propose that analysis of small radioecological data sets by GLMs and/or machine learning can be made more informative by using the following techniques: (1) adding synthetic noise variables to provide benchmarks for distinguishing the performances of valuable predictors from irrelevant ones; (2) adding noise directly to the predictors and/or to the outcome to test the robustness of analysis results against random data fluctuations; (3) adding artificial effects to selected predictors to test the sensitivity of the analysis methods in detecting predictor effects; (4) running a selected machine learning method multiple times (with different random-number seeds) to test the robustness of the detected “signal”; (5) using several machine learning methods to test the “signal’s” sensitivity to differences in analysis techniques. Here, we applied these approaches to simulated data, and to two published examples of small radioecological data sets: (I) counts of fungal taxa in samples of soil contaminated by the Chernobyl nuclear power plan accident (Ukraine), and (II) bacterial abundance in soil samples under a ruptured nuclear waste storage tank (USA). We show that the proposed techniques were advantageous compared with the methodology used in the original publications where the data sets were presented. Specifically, our approach identified a negative effect of radioactive contamination in data set I, and suggested that in data set II stable chromium could have been a stronger limiting factor for bacterial abundance than the radionuclides 137Cs and 99Tc. This new information, which was extracted from these data sets using the proposed techniques, can potentially enhance the design of radioactive waste bioremediation.

Suggested Citation

  • Igor Shuryak, 2017. "Advantages of Synthetic Noise and Machine Learning for Analyzing Radioecological Data Sets," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-19, January.
  • Handle: RePEc:plo:pone00:0170007
    DOI: 10.1371/journal.pone.0170007
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170007
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0170007&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0170007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    3. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    4. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    5. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    6. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    7. Cao, Jason & Tao, Tao, 2025. "Can an identified environmental correlate of car ownership serve as a practical planning tool?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    8. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    9. Doruk Cengiz & Arindrajit Dube & Attila Lindner & David Zentler-Munro, 2022. "Seeing beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 203-247.
    10. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    12. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    13. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    14. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    15. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    16. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    17. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    18. Andrea Sciandra & Alessio Surian & Livio Finos, 2021. "Supervised Machine Learning Methods to Disclose Action and Information in “U.N. 2030 Agenda” Social Media Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 689-699, August.
    19. Mirosław Parol & Paweł Piotrowski & Piotr Kapler & Mariusz Piotrowski, 2021. "Forecasting of 10-Second Power Demand of Highly Variable Loads for Microgrid Operation Control," Energies, MDPI, vol. 14(5), pages 1-29, February.
    20. Tsao, Yu-Chung & Chen, Yu-Kai & Chiu, Shih-Hao & Lu, Jye-Chyi & Vu, Thuy-Linh, 2022. "An innovative demand forecasting approach for the server industry," Technovation, Elsevier, vol. 110(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0170007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.