IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0146357.html
   My bibliography  Save this article

Synthesizing Global and Local Datasets to Estimate Jurisdictional Forest Carbon Fluxes in Berau, Indonesia

Author

Listed:
  • Bronson W Griscom
  • Peter W Ellis
  • Alessandro Baccini
  • Delon Marthinus
  • Jeffrey S Evans
  • Ruslandi

Abstract

Background: Forest conservation efforts are increasingly being implemented at the scale of sub-national jurisdictions in order to mitigate global climate change and provide other ecosystem services. We see an urgent need for robust estimates of historic forest carbon emissions at this scale, as the basis for credible measures of climate and other benefits achieved. Despite the arrival of a new generation of global datasets on forest area change and biomass, confusion remains about how to produce credible jurisdictional estimates of forest emissions. We demonstrate a method for estimating the relevant historic forest carbon fluxes within the Regency of Berau in eastern Borneo, Indonesia. Our method integrates best available global and local datasets, and includes a comprehensive analysis of uncertainty at the regency scale. Principal Findings and Significance: We find that Berau generated 8.91 ± 1.99 million tonnes of net CO2 emissions per year during 2000–2010. Berau is an early frontier landscape where gross emissions are 12 times higher than gross sequestration. Yet most (85%) of Berau’s original forests are still standing. The majority of net emissions were due to conversion of native forests to unspecified agriculture (43% of total), oil palm (28%), and fiber plantations (9%). Most of the remainder was due to legal commercial selective logging (17%). Our overall uncertainty estimate offers an independent basis for assessing three other estimates for Berau. Two other estimates were above the upper end of our uncertainty range. We emphasize the importance of including an uncertainty range for all parameters of the emissions equation to generate a comprehensive uncertainty estimate–which has not been done before. We believe comprehensive estimates of carbon flux uncertainty are increasingly important as national and international institutions are challenged with comparing alternative estimates and identifying a credible range of historic emissions values.

Suggested Citation

  • Bronson W Griscom & Peter W Ellis & Alessandro Baccini & Delon Marthinus & Jeffrey S Evans & Ruslandi, 2016. "Synthesizing Global and Local Datasets to Estimate Jurisdictional Forest Carbon Fluxes in Berau, Indonesia," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-25, January.
  • Handle: RePEc:plo:pone00:0146357
    DOI: 10.1371/journal.pone.0146357
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146357
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0146357&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0146357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Palace & Michael Keller & Steve Frolking & George Hurtt, 2012. "A Review of Above Ground Necromass in Tropical Forests," Chapters, in: Padmini Sudarshana & Madhugiri Nageswara-Rao & Jaya Soneji (ed.), Tropical Forests, IntechOpen.
    2. R. A. Houghton & Brett Byers & Alexander A. Nassikas, 2015. "A role for tropical forests in stabilizing atmospheric CO2," Nature Climate Change, Nature, vol. 5(12), pages 1022-1023, December.
    3. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico E. Alice‐Guier & Frits Mohren & Pieter A. Zuidema, 2020. "The life cycle carbon balance of selective logging in tropical forests of Costa Rica," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 534-547, June.
    2. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    3. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    4. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    5. Paulo Eduardo Teodoro & Luciano de Souza Maria & Jéssica Marciella Almeida Rodrigues & Adriana de Avila e Silva & Maiara Cristina Metzdorf da Silva & Samara Santos de Souza & Fernando Saragosa Rossi &, 2022. "Wildfire Incidence throughout the Brazilian Pantanal Is Driven by Local Climate Rather Than Bovine Stocking Density," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    6. Joseph Mascaro & Gregory P Asner & David E Knapp & Ty Kennedy-Bowdoin & Roberta E Martin & Christopher Anderson & Mark Higgins & K Dana Chadwick, 2014. "A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    7. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    8. Zepharovich, Elena & Ceddia, M. Graziano & Rist, Stephan, 2021. "Social multi-criteria evaluation of land-use scenarios in the Chaco Salteño: Complementing the three-pillar sustainability approach with environmental justice," Land Use Policy, Elsevier, vol. 101(C).
    9. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    10. Mangani, Andrea, 2021. "When does print media address deforestation? A quantitative analysis of major newspapers from US, UK, and Australia," Forest Policy and Economics, Elsevier, vol. 130(C).
    11. World Bank, 2017. "Brazil’s INDC Restoration and Reforestation Target," World Bank Publications - Reports 28588, The World Bank Group.
    12. Murphy, David M. A. & Berazneva, Julia & Lee, David R., 2015. "Fuelwood Source Substitution and Shadow Prices in Western Kenya," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205084, Agricultural and Applied Economics Association.
    13. Araujo, Rafael & Costa, Francisco J M & Sant'Anna, Marcelo, 2020. "Efficient Forestation in the Brazilian Amazon: Evidence from a Dynamic Model," SocArXiv 8yfr7, Center for Open Science.
    14. Söder, Mareike, 2014. "EU biofuel policies in practice: A carbon map for the Brazilian Cerrado," Kiel Working Papers 1966, Kiel Institute for the World Economy (IfW Kiel).
    15. Yanfeng Wang & Ping Huang, 2022. "Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    17. Maarten van der Eynden & Henrik Fliflet & Per Fredrik Ilsaas Pharo & Hege Ragnhildstveit & Snorre Tønset, 2017. "Lazy thinking, lazy giving—or lazy research?," International Area Studies Review, Center for International Area Studies, Hankuk University of Foreign Studies, vol. 20(4), pages 360-363, December.
    18. Guilló, María Dolores & Magalhaes, Manuela, 2018. "Long-run Sustainability in the Green Solow Model," QM&ET Working Papers 18-2, University of Alicante, D. Quantitative Methods and Economic Theory.
    19. Rizwana Yasmeen & Ihtsham Ul Haq Padda & Xing Yao & Wasi Ul Hassan Shah & Muhammad Hafeez, 2022. "Agriculture, forestry, and environmental sustainability: the role of institutions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8722-8746, June.
    20. Lykke E. Andersen & Anna Sophia Doyle & Susana del Granado & Juan Carlos Ledezma & Agnes Medinaceli & Montserrat Valdivia & Diana Weinhold, 2016. "Emisiones Netas de Carbono Provenientes de la Deforestación en Bolivia durante 1990-2000 y 2000-2010: Resultados de un modelo de “Contabilidad de Carbono”," Development Research Working Paper Series 02/2016, Institute for Advanced Development Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0146357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.