IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0016094.html
   My bibliography  Save this article

Optimizing Tactics for Use of the U.S. Antiviral Strategic National Stockpile for Pandemic Influenza

Author

Listed:
  • Nedialko B Dimitrov
  • Sebastian Goll
  • Nathaniel Hupert
  • Babak Pourbohloul
  • Lauren Ancel Meyers

Abstract

In 2009, public health agencies across the globe worked to mitigate the impact of the swine-origin influenza A (pH1N1) virus. These efforts included intensified surveillance, social distancing, hygiene measures, and the targeted use of antiviral medications to prevent infection (prophylaxis). In addition, aggressive antiviral treatment was recommended for certain patient subgroups to reduce the severity and duration of symptoms. To assist States and other localities meet these needs, the U.S. Government distributed a quarter of the antiviral medications in the Strategic National Stockpile within weeks of the pandemic's start. However, there are no quantitative models guiding the geo-temporal distribution of the remainder of the Stockpile in relation to pandemic spread or severity. We present a tactical optimization model for distributing this stockpile for treatment of infected cases during the early stages of a pandemic like 2009 pH1N1, prior to the wide availability of a strain-specific vaccine. Our optimization method efficiently searches large sets of intervention strategies applied to a stochastic network model of pandemic influenza transmission within and among U.S. cities. The resulting optimized strategies depend on the transmissability of the virus and postulated rates of antiviral uptake and wastage (through misallocation or loss). Our results suggest that an aggressive community-based antiviral treatment strategy involving early, widespread, pro-rata distribution of antivirals to States can contribute to slowing the transmission of mildly transmissible strains, like pH1N1. For more highly transmissible strains, outcomes of antiviral use are more heavily impacted by choice of distribution intervals, quantities per shipment, and timing of shipments in relation to pandemic spread. This study supports previous modeling results suggesting that appropriate antiviral treatment may be an effective mitigation strategy during the early stages of future influenza pandemics, increasing the need for systematic efforts to optimize distribution strategies and provide tactical guidance for public health policy-makers.

Suggested Citation

  • Nedialko B Dimitrov & Sebastian Goll & Nathaniel Hupert & Babak Pourbohloul & Lauren Ancel Meyers, 2011. "Optimizing Tactics for Use of the U.S. Antiviral Strategic National Stockpile for Pandemic Influenza," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
  • Handle: RePEc:plo:pone00:0016094
    DOI: 10.1371/journal.pone.0016094
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016094
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0016094&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0016094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph T Wu & Gabriel M Leung & Marc Lipsitch & Ben S Cooper & Steven Riley, 2009. "Hedging against Antiviral Resistance during the Next Influenza Pandemic Using Small Stockpiles of an Alternative Chemotherapy," PLOS Medicine, Public Library of Science, vol. 6(5), pages 1-11, May.
    2. Christina E. Mills & James M. Robins & Marc Lipsitch, 2004. "Transmissibility of 1918 pandemic influenza," Nature, Nature, vol. 432(7019), pages 904-906, December.
    3. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thul, Lawrence & Powell, Warren, 2023. "Stochastic optimization for vaccine and testing kit allocation for the COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 325-338.
    2. Rubina Ali & Inamullah Jan & Muhammad Shoaib Malik, 2020. "Emerging Health Security Threats and Impact of Bioterrorism on the U.S. National Security," Global Political Review, Humanity Only, vol. 5(1), pages 94-103, March.
    3. Gregg S. Gonsalves & Forrest W. Crawford & Paul D. Cleary & Edward H. Kaplan & A. David Paltiel, 2018. "An Adaptive Approach to Locating Mobile HIV Testing Services," Medical Decision Making, , vol. 38(2), pages 262-272, February.
    4. Amy L Greer & Dena Schanzer, 2013. "Using a Dynamic Model to Consider Optimal Antiviral Stockpile Size in the Face of Pandemic Influenza Uncertainty," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    5. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    2. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    3. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    4. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    5. Arenas, Abbiana R. & Thackar, Neil B. & Haskell, Evan C., 2017. "The logistic growth model as an approximating model for viral load measurements of influenza A virus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 206-222.
    6. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    7. Elnaz Karimi & Ketra Schmitt & Ali Akgunduz, 2015. "Effect of individual protective behaviors on influenza transmission: an agent-based model," Health Care Management Science, Springer, vol. 18(3), pages 318-333, September.
    8. Carrasco, L R & Lee, V J & Chen, M I & Matchar, D B & Thompson, J P & Cook, A R, 2011. "Strategies for antiviral stockpiling for future influenza pandemics: a global epidemic-economic perspective," MPRA Paper 57763, University Library of Munich, Germany.
    9. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    10. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    11. Tamer Edirne & Dilek Avci & Burçak Dagkara & Muslum Aslan, 2011. "Knowledge and anticipated attitudes of the community about bird flu outbreak in Turkey, 2007–2008: a survey-based descriptive study," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 56(2), pages 163-168, April.
    12. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    13. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    14. Aditya Goenka & Lin Liu, 2012. "Infectious diseases and endogenous fluctuations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(1), pages 125-149, May.
    15. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    16. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    17. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    18. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    19. Zhongqiang Bai & Juanle Wang & Mingming Wang & Mengxu Gao & Jiulin Sun, 2018. "Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    20. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0016094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.