IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0010765.html
   My bibliography  Save this article

A game-theoretic model of lymphatic filariasis prevention

Author

Listed:
  • Jan Rychtář
  • Dewey Taylor

Abstract

Lymphatic filariasis (LF) is a mosquito-borne parasitic neglected tropical disease. In 2000, WHO launched the Global Programme to Eliminate Lymphatic Filariasis (GPELF) as a public health problem. In 2020, new goals for 2030 were set which includes a reduction to 0 of the total population requiring Mass Drug Administrations (MDA), a primary tool of GPELF. We develop a mathematical model to study what can happen at the end of MDA. We use a game-theoretic approach to assess the voluntary use of insect repellents in the prevention of the spread of LF through vector bites. Our results show that when individuals use what they perceive as optimal levels of protection, the LF incidence rates will become high. This is in striking difference to other vector-borne NTDs such as Chagas or zika. We conclude that the voluntary use of the protection alone will not be enough to keep LF eliminated as a public health problem and a more coordinated effort will be needed at the end of MDA.Author summary: We adapt a compartmental ODE model of lymphatic filariasis (LF) transmission and focus our attention on what happens after Mass Drug Administrations (MDA) is terminated. We add a game-theoretic component to the model and study whether LF transmission can be substantially interrupted by voluntary use of personal protection strategies such as using insect repellents. We identify optimal voluntary protection levels and demonstrate that LF incidence rates will become too high.

Suggested Citation

  • Jan Rychtář & Dewey Taylor, 2022. "A game-theoretic model of lymphatic filariasis prevention," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 16(9), pages 1-18, September.
  • Handle: RePEc:plo:pntd00:0010765
    DOI: 10.1371/journal.pntd.0010765
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010765
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0010765&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0010765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew R Behrend & María-Gloria Basáñez & Jonathan I D Hamley & Travis C Porco & Wilma A Stolk & Martin Walker & Sake J de Vlas & for the NTD Modelling Consortium, 2020. "Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(4), pages 1-17, April.
    2. Kristen Scheckelhoff & Ayesha Ejaz & Igor V. Erovenko & Jan Rychtář & Dewey Taylor, 2021. "Optimal Voluntary Vaccination of Adults and Adolescents Can Help Eradicate Hepatitis B in China," Games, MDPI, vol. 12(4), pages 1-13, October.
    3. Geoffard, Pierre-Yves & Philipson, Tomas, 1997. "Disease Eradication: Private versus Public Vaccination," American Economic Review, American Economic Association, vol. 87(1), pages 222-230, March.
    4. Jabili Angina & Anish Bachhu & Eesha Talati & Rishi Talati & Jan Rychtář & Dewey Taylor, 2022. "Game-Theoretical Model of the Voluntary Use of Insect Repellents to Prevent Zika Fever," Dynamic Games and Applications, Springer, vol. 12(1), pages 133-146, March.
    5. repec:plo:pone00:0060373 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovic Aaron S. Caasi & Brian M. Joseph & Heera J. Kodiyamplakkal & Jaelene Renae U. Manibusan & Leslie J. Camacho Aquino & Hyunju Oh & Jan Rychtář & Dewey Taylor, 2022. "A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks," Games, MDPI, vol. 13(4), pages 1-14, August.
    2. Andrea Galeotti & Brian W. Rogers, 2013. "Strategic Immunization and Group Structure," American Economic Journal: Microeconomics, American Economic Association, vol. 5(2), pages 1-32, May.
    3. David A. Hennessy, 2007. "Behavioral Incentives, Equilibrium Endemic Disease, and Health Management Policy for Farmed Animals," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(3), pages 698-711.
    4. Marion Davin & Mouez Fodha & Thomas Seegmuller, 2021. "Environment, public debt and epidemics," AMSE Working Papers 2128, Aix-Marseille School of Economics, France.
    5. Chanel, Olivier & Luchini, Stéphane & Massoni, Sébastien & Vergnaud, Jean-Christophe, 2011. "Impact of information on intentions to vaccinate in a potential epidemic: Swine-origin Influenza A (H1N1)," Social Science & Medicine, Elsevier, vol. 72(2), pages 142-148, January.
    6. Toxvaerd, Flavio, 2010. "Recurrent Infection and Externalities in Prevention," CEPR Discussion Papers 8112, C.E.P.R. Discussion Papers.
    7. Barham, Tania & Maluccio, John A., 2009. "Eradicating diseases: The effect of conditional cash transfers on vaccination coverage in rural Nicaragua," Journal of Health Economics, Elsevier, vol. 28(3), pages 611-621, May.
    8. Sanjeev Goyal & Adrien Vigier, 2014. "Attack, Defence, and Contagion in Networks," Review of Economic Studies, Oxford University Press, vol. 81(4), pages 1518-1542.
    9. Kessing, Sebastian G. & Nuscheler, Robert, 2006. "Monopoly pricing with negative network effects: The case of vaccines," European Economic Review, Elsevier, vol. 50(4), pages 1061-1069, May.
    10. Wang, Tong, 2012. "Essays on the Economics of Disease, with Particular Reference to Livestock," ISU General Staff Papers 201201010800003982, Iowa State University, Department of Economics.
    11. Ranjan, Ram & Evans, Edward A., 2007. "Private Responses to Public Incentives for Invasive Species Management," Farm and Business - The Journal of the Caribbean Agro-Economic Society, Caribbean Agro-Economic Society, vol. 7(01), pages 1-24.
    12. d’Albis, Hippolyte & Augeraud-Véron, Emmanuelle, 2021. "Optimal prevention and elimination of infectious diseases," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    13. Rabah Amir & Raouf Boucekkine, 2023. "Epidemics, vaccines, and health policy," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(6), pages 1143-1148, December.
    14. Acemoglu, Daron & Malekian, Azarakhsh & Ozdaglar, Asu, 2016. "Network security and contagion," Journal of Economic Theory, Elsevier, vol. 166(C), pages 536-585.
    15. Courtney J. Ward, 2009. "Influenza Immunization Campaigns: Is an Ounce of Prevention Worth a Pound of Cure?," Working Papers daleconwp2010-01, Dalhousie University, Department of Economics.
    16. Courtney J. Ward, 2014. "Influenza Vaccination Campaigns: Is an Ounce of Prevention Worth a Pound of Cure?," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 38-72, January.
    17. Laurent Coudeville, 2003. "Measles dynamics and vaccination diffusion," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 4(4), pages 319-326, December.
    18. Goyal, Sanjeev & Vigier, Adrien, 2015. "Interaction, protection and epidemics," Journal of Public Economics, Elsevier, vol. 125(C), pages 64-69.
    19. Barrett, Scott & Hoel, Michael, 2007. "Optimal disease eradication," Environment and Development Economics, Cambridge University Press, vol. 12(5), pages 627-652, October.
    20. Auld, M. Christopher & Toxvaerd, Flavio, 2021. "The Great Covid-19 Vaccine Rollout: Behavioural And Policy Responses," National Institute Economic Review, National Institute of Economic and Social Research, vol. 257, pages 14-35, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0010765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.