IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0010441.html
   My bibliography  Save this article

Faster indicators of chikungunya incidence using Google searches

Author

Listed:
  • Sam Miller
  • Tobias Preis
  • Giovanni Mizzi
  • Leonardo Soares Bastos
  • Marcelo Ferreira da Costa Gomes
  • Flávio Codeço Coelho
  • Claudia Torres Codeço
  • Helen Susannah Moat

Abstract

Chikungunya, a mosquito-borne disease, is a growing threat in Brazil, where over 640,000 cases have been reported since 2017. However, there are often long delays between diagnoses of chikungunya cases and their entry in the national monitoring system, leaving policymakers without the up-to-date case count statistics they need. In contrast, weekly data on Google searches for chikungunya is available with no delay. Here, we analyse whether Google search data can help improve rapid estimates of chikungunya case counts in Rio de Janeiro, Brazil. We build on a Bayesian approach suitable for data that is subject to long and varied delays, and find that including Google search data reduces both model error and uncertainty. These improvements are largest during epidemics, which are particularly important periods for policymakers. Including Google search data in chikungunya surveillance systems may therefore help policymakers respond to future epidemics more quickly.Author summary: To respond quickly to disease outbreaks, policymakers need rapid data on the number of new infections. However, for many diseases, such data is very delayed, due to the administrative work required to record each case in a disease surveillance system. This is a problem for data on chikungunya, a mosquito-borne disease which is a growing threat in Brazil. In Rio de Janeiro, delays in chikungunya cases being recorded average four weeks. These delays are sometimes longer and sometimes shorter. In stark contrast to chikungunya data, data on what people are searching for on Google is available almost immediately. People suffering from chikungunya might search on Google for information about the disease. Here, we investigate whether rapidly available Google data can help generate quick estimates of the number of chikungunya cases in Rio de Janeiro in the previous week. Our model uses a Bayesian methodology to help account for the varying delays in the chikungunya data. We show that including Google search data in the model reduces both the error and uncertainty of the chikungunya case count estimates, in particular during epidemics. Our method could be used to help policymakers to respond more quickly to future chikungunya epidemics.

Suggested Citation

  • Sam Miller & Tobias Preis & Giovanni Mizzi & Leonardo Soares Bastos & Marcelo Ferreira da Costa Gomes & Flávio Codeço Coelho & Claudia Torres Codeço & Helen Susannah Moat, 2022. "Faster indicators of chikungunya incidence using Google searches," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 16(6), pages 1-16, June.
  • Handle: RePEc:plo:pntd00:0010441
    DOI: 10.1371/journal.pntd.0010441
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010441
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0010441&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0010441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cecilia de Almeida Marques-Toledo & Carolin Marlen Degener & Livia Vinhal & Giovanini Coelho & Wagner Meira & Claudia Torres Codeço & Mauro Martins Teixeira, 2017. "Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-20, July.
    2. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
    2. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    3. Francesco Capozza & Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2021. "Studying Information Acquisition in the Field: A Practical Guide and Review," CEBI working paper series 21-15, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    4. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    5. Kučerová, Zuzana & Pakši, Daniel & Koňařík, Vojtěch, 2024. "Macroeconomic fundamentals and attention: What drives european consumers’ inflation expectations?," Economic Systems, Elsevier, vol. 48(1).
    6. David W Carter & Scott Crosson & Christopher Liese, 2015. "Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
    7. Francesco Finazzi & Jacopo Rodeschini & Lorenzo Tedesco, 2025. "Discussion on Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models," Environmetrics, John Wiley & Sons, Ltd., vol. 36(2), March.
    8. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    9. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    10. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    11. C. Douglas Swearingen & Joseph T. Ripberger, 2014. "Google Insights and U.S. Senate Elections: Does Search Traffic Provide a Valid Measure of Public Attention to Political Candidates?," Social Science Quarterly, Southwestern Social Science Association, vol. 95(3), pages 882-893, September.
    12. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    13. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    14. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    15. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    16. Sansone, Dario, 2019. "Pink work: Same-sex marriage, employment and discrimination," Journal of Public Economics, Elsevier, vol. 180(C).
    17. Pulkit Sharma & Achut Manandhar & Patrick Thomson & Jacob Katuva & Robert Hope & David A. Clifton, 2019. "Combining Multi-Modal Statistics for Welfare Prediction Using Deep Learning," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    18. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    19. John M. Abowd & Ian M. Schmutte & William Sexton & Lars Vilhuber, 2019. "Suboptimal Provision of Privacy and Statistical Accuracy When They are Public Goods," Papers 1906.09353, arXiv.org.
    20. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0010441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.