IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006176.html
   My bibliography  Save this article

Solving the RNA design problem with reinforcement learning

Author

Listed:
  • Peter Eastman
  • Jade Shi
  • Bharath Ramsundar
  • Vijay S Pande

Abstract

We use reinforcement learning to train an agent for computational RNA design: given a target secondary structure, design a sequence that folds to that structure in silico. Our agent uses a novel graph convolutional architecture allowing a single model to be applied to arbitrary target structures of any length. After training it on randomly generated targets, we test it on the Eterna100 benchmark and find it outperforms all previous algorithms. Analysis of its solutions shows it has successfully learned some advanced strategies identified by players of the game Eterna, allowing it to solve some very difficult structures. On the other hand, it has failed to learn other strategies, possibly because they were not required for the targets in the training set. This suggests the possibility that future improvements to the training protocol may yield further gains in performance.Author summary: Designing RNA sequences that fold to desired structures is an important problem in bioengineering. We have applied recent advances in machine learning to address this problem. The computer learns without any human input, using only trial and error to figure out how to design RNA. It quickly discovers powerful strategies that let it solve many difficult design problems. When tested on a challenging benchmark, it outperforms all previous algorithms. We analyze its solutions and identify some of the strategies it has learned, as well as other important strategies it has failed to learn. This suggests possible approaches to further improving its performance. This work reflects a paradigm shift taking place in computer science, which has the potential to transform computational biology. Instead of relying on experts to design algorithms by hand, computers can use artificial intelligence to learn their own algorithms directly. The resulting methods often work better than the ones designed by humans.

Suggested Citation

  • Peter Eastman & Jade Shi & Bharath Ramsundar & Vijay S Pande, 2018. "Solving the RNA design problem with reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-15, June.
  • Handle: RePEc:plo:pcbi00:1006176
    DOI: 10.1371/journal.pcbi.1006176
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006176
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006176&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chenhui Hao & Xiang Li & Cheng Tian & Wen Jiang & Guansong Wang & Chengde Mao, 2014. "Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohan V Koodli & Benjamin Keep & Katherine R Coppess & Fernando Portela & Eterna participants & Rhiju Das, 2019. "EternaBrain: Automated RNA design through move sets and strategies from an Internet-scale RNA videogame," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    2. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    3. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    4. Ostheimer, Julia & Chowdhury, Soumitra & Iqbal, Sarfraz, 2021. "An alliance of humans and machines for machine learning: Hybrid intelligent systems and their design principles," Technology in Society, Elsevier, vol. 66(C).
    5. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    6. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    7. Mandal, Ankit & Tiwari, Yash & Panigrahi, Prasanta K. & Pal, Mayukha, 2022. "Physics aware analytics for accurate state prediction of dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Bossert, Leonie & Hagendorff, Thilo, 2021. "Animals and AI. The role of animals in AI research and application – An overview and ethical evaluation," Technology in Society, Elsevier, vol. 67(C).
    9. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    10. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    11. Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
    12. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    13. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    14. Zhang, Guangming & Zhang, Chao & Wang, Wei & Cao, Huan & Chen, Zhenyu & Niu, Yuguang, 2023. "Offline reinforcement learning control for electricity and heat coordination in a supercritical CHP unit," Energy, Elsevier, vol. 266(C).
    15. Zhaobin Mo & Xuan Di & Rongye Shi, 2023. "Robust Data Sampling in Machine Learning: A Game-Theoretic Framework for Training and Validation Data Selection," Games, MDPI, vol. 14(1), pages 1-13, January.
    16. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    17. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    18. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    19. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    20. Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.