IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005508.html
   My bibliography  Save this article

Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis

Author

Listed:
  • Jörn Diedrichsen
  • Nikolaus Kriegeskorte

Abstract

Representational models specify how activity patterns in populations of neurons (or, more generally, in multivariate brain-activity measurements) relate to sensory stimuli, motor responses, or cognitive processes. In an experimental context, representational models can be defined as hypotheses about the distribution of activity profiles across experimental conditions. Currently, three different methods are being used to test such hypotheses: encoding analysis, pattern component modeling (PCM), and representational similarity analysis (RSA). Here we develop a common mathematical framework for understanding the relationship of these three methods, which share one core commonality: all three evaluate the second moment of the distribution of activity profiles, which determines the representational geometry, and thus how well any feature can be decoded from population activity. Using simulated data for three different experimental designs, we compare the power of the methods to adjudicate between competing representational models. PCM implements a likelihood-ratio test and therefore provides the most powerful test if its assumptions hold. However, the other two approaches—when conducted appropriately—can perform similarly. In encoding analysis, the linear model needs to be appropriately regularized, which effectively imposes a prior on the activity profiles. With such a prior, an encoding model specifies a well-defined distribution of activity profiles. In RSA, the unequal variances and statistical dependencies of the dissimilarity estimates need to be taken into account to reach near-optimal power in inference. The three methods render different aspects of the information explicit (e.g. single-response tuning in encoding analysis and population-response representational dissimilarity in RSA) and have specific advantages in terms of computational demands, ease of use, and extensibility. The three methods are properly construed as complementary components of a single data-analytical toolkit for understanding neural representations on the basis of multivariate brain-activity data.Author summary: Modern neuroscience can measure activity of many neurons or the local blood oxygenation of many brain locations simultaneously. As the number of simultaneous measurements grows, we can better investigate how the brain represents and transforms information, to enable perception, cognition, and behavior. Recent studies go beyond showing that a brain region is involved in some function. They use representational models that specify how different perceptions, cognitions, and actions are encoded in brain-activity patterns. In this paper, we provide a general mathematical framework for such representational models, which clarifies the relationships between three different methods that are currently used in the neuroscience community. All three methods evaluate the same core feature of the data, but each has distinct advantages and disadvantages. Pattern component modelling (PCM) implements the most powerful test between models, and is analytically tractable and expandable. Representational similarity analysis (RSA) provides a highly useful summary statistic (the dissimilarity) and enables model comparison with weaker distributional assumptions. Finally, encoding models characterize individual responses and enable the study of their layout across cortex. We argue that these methods should be considered components of a larger toolkit for testing hypotheses about the way the brain represents information.

Suggested Citation

  • Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
  • Handle: RePEc:plo:pcbi00:1005508
    DOI: 10.1371/journal.pcbi.1005508
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005508
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005508&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander G. Huth & Wendy A. de Heer & Thomas L. Griffiths & Frédéric E. Theunissen & Jack L. Gallant, 2016. "Natural speech reveals the semantic maps that tile human cerebral cortex," Nature, Nature, vol. 532(7600), pages 453-458, April.
    2. R. Quian Quiroga & L. Reddy & G. Kreiman & C. Koch & I. Fried, 2005. "Invariant visual representation by single neurons in the human brain," Nature, Nature, vol. 435(7045), pages 1102-1107, June.
    3. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    4. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    5. Kendrick N. Kay & Thomas Naselaris & Ryan J. Prenger & Jack L. Gallant, 2008. "Identifying natural images from human brain activity," Nature, Nature, vol. 452(7185), pages 352-355, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    2. Umut Güçlü & Marcel A J van Gerven, 2014. "Unsupervised Feature Learning Improves Prediction of Human Brain Activity in Response to Natural Images," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-12, August.
    3. Agustin Lage-Castellanos & Giancarlo Valente & Elia Formisano & Federico De Martino, 2019. "Methods for computing the maximum performance of computational models of fMRI responses," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-25, March.
    4. Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.
    5. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    6. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    7. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    8. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    9. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    10. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    12. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    13. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    14. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    15. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    16. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.
    17. Atanda Mustapha Saidi, 2017. "Working Paper 273 - Stock (Mis)pricing and investment dynamics in Africa," Working Paper Series 2390, African Development Bank.
    18. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    19. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    20. Olivier Ledoit & Michael Wolf, 2003. "Honey, I shrunk the sample covariance matrix," Economics Working Papers 691, Department of Economics and Business, Universitat Pompeu Fabra.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.