IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v8y2021i1d10.1057_s41599-021-00903-w.html
   My bibliography  Save this article

Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases

Author

Listed:
  • Lutz Bornmann

    (Administrative Headquarters of the Max Planck Society)

  • Robin Haunschild

    (Max Planck Institute for Solid State Research)

  • Rüdiger Mutz

    (CHESS University of Zurich)

Abstract

Growth of science is a prevalent issue in science of science studies. In recent years, two new bibliographic databases have been introduced, which can be used to study growth processes in science from centuries back: Dimensions from Digital Science and Microsoft Academic. In this study, we used publication data from these new databases and added publication data from two established databases (Web of Science from Clarivate Analytics and Scopus from Elsevier) to investigate scientific growth processes from the beginning of the modern science system until today. We estimated regression models that included simultaneously the publication counts from the four databases. The results of the unrestricted growth of science calculations show that the overall growth rate amounts to 4.10% with a doubling time of 17.3 years. As the comparison of various segmented regression models in the current study revealed, models with four or five segments fit the publication data best. We demonstrated that these segments with different growth rates can be interpreted very well, since they are related to either phases of economic (e.g., industrialization) and/or political developments (e.g., Second World War). In this study, we additionally analyzed scientific growth in two broad fields (Physical and Technical Sciences as well as Life Sciences) and the relationship of scientific and economic growth in UK. The comparison between the two fields revealed only slight differences. The comparison of the British economic and scientific growth rates showed that the economic growth rate is slightly lower than the scientific growth rate.

Suggested Citation

  • Lutz Bornmann & Robin Haunschild & Rüdiger Mutz, 2021. "Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
  • Handle: RePEc:pal:palcom:v:8:y:2021:i:1:d:10.1057_s41599-021-00903-w
    DOI: 10.1057/s41599-021-00903-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-021-00903-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-021-00903-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hilbe,Joseph M., 2014. "Modeling Count Data," Cambridge Books, Cambridge University Press, number 9781107611252.
    2. Joshua Ettinger & Friederike E. L. Otto & E. Lisa F. Schipper, 2021. "Storytelling can be a powerful tool for science," Nature, Nature, vol. 589(7842), pages 352-352, January.
    3. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    4. Lutz Bornmann & Rüdiger Mutz, 2015. "Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2215-2222, November.
    5. Daniele Fanelli & Vincent Larivière, 2016. "Researchers’ Individual Publication Rate Has Not Increased in a Century," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    6. Ronald N. Kostoff & Michael F. Shlesinger, 2005. "CAB: Citation-Assisted Background," Scientometrics, Springer;Akadémiai Kiadó, vol. 62(2), pages 199-212, January.
    7. Hamilton Ntuli & Roula Inglesi-Lotz & Tsangyao Chang & Anastassios Pouris, 2015. "Does research output cause economic growth or vice versa? Evidence from 34 OECD countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(8), pages 1709-1716, August.
    8. Shouhuai Xu & Moti Yung & Jingguo Wang, 2021. "Seeking Foundations for the Science of Cyber Security," Information Systems Frontiers, Springer, vol. 23(2), pages 263-267, April.
    9. Werner Marx & Lutz Bornmann, 2016. "Change of perspective: bibliometrics from the point of view of cited references—a literature overview on approaches to the evaluation of cited references in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1397-1415, November.
    10. A. Raan, 1999. "Advanced bibliometric methods for the evaluation of universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 45(3), pages 417-423, July.
    11. Michael Taylor, 2020. "An altmetric attention advantage for open access books in the humanities and social sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2523-2543, December.
    12. Jean J. Wang & Sarah X. Shao & Fred Y. Ye, 2021. "Identifying 'seed' papers in sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6001-6011, July.
    13. Thomas, Ryland & Hills, Sally & Dimsdale, Nicholas, 2010. "The UK recession in context — what do three centuries of data tell us?," Bank of England Quarterly Bulletin, Bank of England, vol. 50(4), pages 277-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmal, W. Benedikt & Haucap, Justus & Knoke, Leon, 2023. "The role of gender and coauthors in academic publication behavior," Research Policy, Elsevier, vol. 52(10).
    2. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    3. A. M. Soehartono & L. G. Yu & K. A. Khor, 2022. "Essential signals in publication trends and collaboration patterns in global Research Integrity and Research Ethics (RIRE)," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7487-7497, December.
    4. Ruhua Huang & Yuting Huang & Fan Qi & Leyi Shi & Baiyang Li & Wei Yu, 2022. "Exploring the characteristics of special issues: distribution, topicality, and citation impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5233-5256, September.
    5. Lutz Bornmann & Klaus Wohlrabe, 2024. "Recent Temporal Dynamics in Economics: Empirical Analyses of Annual Publications in Economic Fields," CESifo Working Paper Series 10881, CESifo.
    6. Annika Kreuder & Ulrich Frick & Katrin Rakoczy & Sabine J. Schlittmeier, 2024. "Digital competence in adolescents and young adults: a critical analysis of concomitant variables, methodologies and intervention strategies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-20, December.
    7. Gabriela F. Nane & Nicolas Robinson-Garcia & François Schalkwyk & Daniel Torres-Salinas, 2023. "COVID-19 and the scientific publishing system: growth, open access and scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 345-362, January.
    8. Bakır, Mahmut & Özdemir, Emircan & Akan, Şahap & Atalık, Özlem, 2022. "A bibliometric analysis of airport service quality," Journal of Air Transport Management, Elsevier, vol. 104(C).
    9. Haunschild, Robin & Bornmann, Lutz, 2023. "Which papers cited which tweets? An exploratory analysis based on Scopus data," Journal of Informetrics, Elsevier, vol. 17(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malte Hückstädt, 2023. "Ten reasons why research collaborations succeed—a random forest approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1923-1950, March.
    2. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2022. "Using the Leiden Rankings as a Heuristics: Evidence from Italian universities in the European landscape," LEM Papers Series 2022/08, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Zhuanlan Sun & C. Clark Cao & Sheng Liu & Yiwei Li & Chao Ma, 2024. "Behavioral consequences of second-person pronouns in written communications between authors and reviewers of scientific papers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Pierre Pelletier & Kevin Wirtz, 2023. "Sails and Anchors: The Complementarity of Exploratory and Exploitative Scientists in Knowledge Creation," Papers 2312.10476, arXiv.org.
    5. Thomas, Duncan Andrew & Ramos-Vielba, Irene, 2022. "Reframing study of research(er) funding towards configurations and trails," SocArXiv uty2v, Center for Open Science.
    6. Weihua Li & Sam Zhang & Zhiming Zheng & Skyler J. Cranmer & Aaron Clauset, 2022. "Untangling the network effects of productivity and prominence among scientists," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Liyin Zhang & Yuchen Qian & Chao Ma & Jiang Li, 2023. "Continued collaboration shortens the transition period of scientists who move to another institution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1765-1784, March.
    8. Katchanov, Yurij L. & Markova, Yulia V. & Shmatko, Natalia A., 2023. "Uncited papers in the structure of scientific communication," Journal of Informetrics, Elsevier, vol. 17(2).
    9. Jiang, Zhuoren & Lin, Tianqianjin & Huang, Cui, 2023. "Deep representation learning of scientific paper reveals its potential scholarly impact," Journal of Informetrics, Elsevier, vol. 17(1).
    10. Michael Färber & Melissa Coutinho & Shuzhou Yuan, 2023. "Biases in scholarly recommender systems: impact, prevalence, and mitigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2703-2736, May.
    11. Eitan Frachtenberg, 2022. "Multifactor Citation Analysis over Five Years: A Case Study of SIGMETRICS Papers," Publications, MDPI, vol. 10(4), pages 1-16, December.
    12. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.
    13. Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
    14. Saad Ahmed Javed & Sifeng Liu, 2018. "Predicting the research output/growth of selected countries: application of Even GM (1, 1) and NDGM models," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 395-413, April.
    15. Ksenia Silchenko, 2018. "The other "meta" of meta-analysis: Qualitative and text-based approaches to "analysis of analyses" in marketing," MERCATI & COMPETITIVIT?, FrancoAngeli Editore, vol. 2018(4), pages 27-45.
    16. Andreas Thor & Lutz Bornmann & Werner Marx & Rüdiger Mutz, 2018. "Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 591-608, July.
    17. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2023. "A heuristic approach based on Leiden rankings to identify outliers: evidence from Italian universities in the European landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 483-510, January.
    18. Liang, Zhentao & Ba, Zhichao & Mao, Jin & Li, Gang, 2023. "Research complexity increases with scientists’ academic age: Evidence from library and information science," Journal of Informetrics, Elsevier, vol. 17(1).
    19. Manuel Goyanes & Márton Demeter & Aurea Grané & Tamás Tóth & Homero Gil Zúñiga, 2023. "Research patterns in communication (2009–2019): testing female representation and productivity differences, within the most cited authors and the field," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 137-156, January.
    20. Gersbach, Hans & Schneider, Maik & Schneller, Olivier, 2010. "Optimal Mix of Applied and Basic Research, Distance to Frontier, and Openness," CEPR Discussion Papers 7795, C.E.P.R. Discussion Papers.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:8:y:2021:i:1:d:10.1057_s41599-021-00903-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.