IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v19y2025i1s1751157724001457.html
   My bibliography  Save this article

A Dirichlet-Multinomial mixture model of Statistical Science: Mapping the shift of a paradigm

Author

Listed:
  • Bilancia, Massimo
  • Dačević, Rade

Abstract

Using Bayesian natural language processing (NLP) methods and a scalable variational algorithm tailored for mixtures of discrete positive data, we analyzed a large corpus of 111,411 eprints submitted to the arXiv repository between 1994 and 2022 in the Statistics category (the primary classification for these eprints on arXiv). Our objective is to assess the impact of Machine Learning (ML) on the field of Statistics–specifically, to determine whether the introduction of ML has led to a fundamental paradigm shift, transforming traditional statistical problems or creating entirely new ones, or if this perceived revolution is primarily occurring outside the field of Statistics. Our findings suggest that the only significant paradigm shift for Statistics as a scientific discipline remains the Bayesian revolution that began in the early 1990s.

Suggested Citation

  • Bilancia, Massimo & Dačević, Rade, 2025. "A Dirichlet-Multinomial mixture model of Statistical Science: Mapping the shift of a paradigm," Journal of Informetrics, Elsevier, vol. 19(1).
  • Handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001457
    DOI: 10.1016/j.joi.2024.101633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724001457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huailan Liu & Zhiwang Chen & Jie Tang & Yuan Zhou & Sheng Liu, 2020. "Mapping the technology evolution path: a novel model for dynamic topic detection and tracking," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2043-2090, December.
    2. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    3. Lutz Bornmann & Robin Haunschild & Rüdiger Mutz, 2021. "Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    4. Massimo Bilancia & Michele Nanni & Fabio Manca & Gianvito Pio, 2023. "Variational Bayes estimation of hierarchical Dirichlet-multinomial mixtures for text clustering," Computational Statistics, Springer, vol. 38(4), pages 2015-2051, December.
    5. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    6. Sai Dileep Koneru & David Rench McCauley & Michael C Smith & David Guarrera & Jenn Robinson & Sarah Rajtmajer, 2023. "The evolution of scientific literature as metastable knowledge states," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-19, July.
    7. repec:dau:papers:123456789/4648 is not listed on IDEAS
    8. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    9. Qi Wang, 2018. "A bibliometric model for identifying emerging research topics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(2), pages 290-304, February.
    10. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    11. Chris Fraley & Adrian E. Raftery, 2007. "Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 155-181, September.
    12. Laura Anderlucci & Cinzia Viroli, 2020. "Mixtures of Dirichlet-Multinomial distributions for supervised and unsupervised classification of short text data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 759-770, December.
    13. repec:dau:papers:123456789/3549 is not listed on IDEAS
    14. Jia-Chiun Pan & Chih-Min Liu & Hai-Gwo Hwu & Guan-Hua Huang, 2015. "Allocation Variable-Based Probabilistic Algorithm to Deal with Label Switching Problem in Bayesian Mixture Models," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Bilancia & Andrea Nigri & Samuele Magro, 2025. "Stochastic variational inference for clustering short text data with finite mixtures of Dirichlet-Multinomial distributions," Statistical Papers, Springer, vol. 66(4), pages 1-39, June.
    2. Massimo Bilancia & Michele Nanni & Fabio Manca & Gianvito Pio, 2023. "Variational Bayes estimation of hierarchical Dirichlet-multinomial mixtures for text clustering," Computational Statistics, Springer, vol. 38(4), pages 2015-2051, December.
    3. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    4. Yu, Dejian & Xiang, Bo, 2024. "An ESTs detection research based on paper entity mapping: Combining scientific text modeling and neural prophet," Journal of Informetrics, Elsevier, vol. 18(4).
    5. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    6. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    7. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    8. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    9. Mathis, Bryan & Ohniwa, Ryosuke L., 2024. "Trends in emerging topics generation across countries in life science and medicine," Journal of Informetrics, Elsevier, vol. 18(3).
    10. Ryosuke L. Ohniwa & Kunio Takeyasu & Aiko Hibino, 2022. "Researcher dynamics in the generation of emerging topics in life sciences and medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 871-884, February.
    11. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    12. Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
    13. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
    14. Zhenyu Yang & Wenyu Zhang & Zhimin Wang & Xiaoling Huang, 2024. "A deep learning-based method for predicting the emerging degree of research topics using emerging index," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4021-4042, July.
    15. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    16. Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
    17. Jiang, Man & Yang, Siluo & Gao, Qiang, 2024. "Multidimensional indicators to identify emerging technologies: Perspective of technological knowledge flow," Journal of Informetrics, Elsevier, vol. 18(1).
    18. Angela Maria D’Uggento & Albino Biafora & Fabio Manca & Claudia Marin & Massimo Bilancia, 2023. "A text data mining approach to the study of emotions triggered by new advertising formats during the COVID-19 pandemic," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2303-2325, June.
    19. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    20. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.