IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287226.html
   My bibliography  Save this article

The evolution of scientific literature as metastable knowledge states

Author

Listed:
  • Sai Dileep Koneru
  • David Rench McCauley
  • Michael C Smith
  • David Guarrera
  • Jenn Robinson
  • Sarah Rajtmajer

Abstract

The problem of identifying common concepts in the sciences and deciding when new ideas have emerged is an open one. Metascience researchers have sought to formalize principles underlying stages in the life cycle of scientific research, understand how knowledge is transferred between scientists and stakeholders, and explain how new ideas are generated and take hold. Here, we model the state of scientific knowledge immediately preceding new directions of research as a metastable state and the creation of new concepts as combinatorial innovation. Through a novel approach combining natural language clustering and citation graph analysis, we predict the evolution of ideas over time and thus connect a single scientific article to past and future concepts in a way that goes beyond traditional citation and reference connections.

Suggested Citation

  • Sai Dileep Koneru & David Rench McCauley & Michael C Smith & David Guarrera & Jenn Robinson & Sarah Rajtmajer, 2023. "The evolution of scientific literature as metastable knowledge states," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-19, July.
  • Handle: RePEc:plo:pone00:0287226
    DOI: 10.1371/journal.pone.0287226
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287226
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287226&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sun, Xiaoling & Ding, Kun & Lin, Yuan, 2016. "Mapping the evolution of scientific fields based on cross-field authors," Journal of Informetrics, Elsevier, vol. 10(3), pages 750-761.
    2. repec:osf:socarx:46mnb_v1 is not listed on IDEAS
    3. Alipourfard, Nazanin & Arendt, Beatrix & Benjamin, Daniel Jacob & Benkler, Noam & Bishop, Michael Metcalf & Burstein, Mark & Bush, Martin & Caverlee, James & Chen, Yiling & Clark, Chae, 2021. "Systematizing Confidence in Open Research and Evidence (SCORE)," SocArXiv 46mnb, Center for Open Science.
    4. Jacob B. Slyder & Beth R. Stein & Brent S. Sams & David M. Walker & B. Jacob Beale & Jeffrey J. Feldhaus & Carolyn A. Copenheaver, 2011. "Citation pattern and lifespan: a comparison of discipline, institution, and individual," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 955-966, December.
    5. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    6. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    7. Fernanda Morillo & María Bordons & Isabel Gómez, 2001. "An approach to interdisciplinarity through bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 203-222, April.
    8. Mario Coccia, 2018. "General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1265-1283, November.
    9. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    10. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilancia, Massimo & Dačević, Rade, 2025. "A Dirichlet-Multinomial mixture model of Statistical Science: Mapping the shift of a paradigm," Journal of Informetrics, Elsevier, vol. 19(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    2. Shunshun Shi & Wenyu Zhang & Shuai Zhang & Jie Chen, 2018. "Does prestige dimension influence the interdisciplinary performance of scientific entities in knowledge flow? Evidence from the e-government field," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1237-1264, November.
    3. Wooseok Jang & Heeyeul Kwon & Yongtae Park & Hakyeon Lee, 2018. "Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 231-254, July.
    4. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    5. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    6. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    7. Juste Raimbault, 2019. "Exploration of an interdisciplinary scientific landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 617-641, May.
    8. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
    9. Tanmoy Chakraborty, 2018. "Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1011-1029, March.
    10. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    11. Jorge Mannana-Rodriguez & Elea Giménez-Toledo, 2018. "Specialization and multidisciplinarity of scholarly book publishers: differences between Spanish University Presses and other scholarly publishers," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 19-30, January.
    12. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    13. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    14. Deng Cheng & Zhang Xue & Yang Zhibo & Zhang Mingze, 2025. "Impact of interdisciplinarity on disruptive innovation: the moderating role of collaboration pattern and collaboration size," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(4), pages 2379-2401, April.
    15. Keisuke Okamura, 2019. "Interdisciplinarity revisited: evidence for research impact and dynamism," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
    16. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    17. Karmen Stopar & Damjana Drobne & Klemen Eler & Tomaz Bartol, 2016. "Citation analysis and mapping of nanoscience and nanotechnology: identifying the scope and interdisciplinarity of research," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 563-581, February.
    18. Sándor Soós & George Kampis, 2012. "Beyond the basemap of science: mapping multiple structures in research portfolios: evidence from Hungary," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 869-891, December.
    19. Juan María Hernández & Pablo Dorta-González, 2020. "Interdisciplinarity Metric Based on the Co-Citation Network," Mathematics, MDPI, vol. 8(4), pages 1-8, April.
    20. Shengli Deng & Sudi Xia, 2020. "Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 489-513, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.