IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v93y2012i3d10.1007_s11192-012-0713-x.html
   My bibliography  Save this article

Beyond the basemap of science: mapping multiple structures in research portfolios: evidence from Hungary

Author

Listed:
  • Sándor Soós

    (Library of the Hungarian Academy of Sciences)

  • George Kampis

    (Lorand Eötvös University)

Abstract

As a novel tool for evaluating research competences of R&D actors, science overlay maps have recently been introduced in the scientometric literature, with associated measures for assessing the degree of diversification in research profiles. In this study, we continue the elaboration of this approach: based on science overlay maps (called here m-maps), a new type of map is introduced to reveal the competence structure of R&D institutions (i-maps). It is argued, that while m-maps represent the multidisciplinarity of research profiles, i-maps convey the extent of interdisciplinarity realized in them. Upon i-maps, a set of new measures are also proposed to quantify this feature. With these measures in hand, and also as a follow-up to our previous work, we apply these measures to a sample of Hungarian Research Institutions (HROs). Based on the obtained rankings, a principal component analysis is conducted to reveal main structural dimensions of researh portfolios (of HROs) covered by these measures. The position of HROs along these dimensions then allows us to draw a typology of organizations, according to various combinations of inter- and multidisciplinarity characteristic of their performance.

Suggested Citation

  • Sándor Soós & George Kampis, 2012. "Beyond the basemap of science: mapping multiple structures in research portfolios: evidence from Hungary," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 869-891, December.
  • Handle: RePEc:spr:scient:v:93:y:2012:i:3:d:10.1007_s11192-012-0713-x
    DOI: 10.1007/s11192-012-0713-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-012-0713-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-012-0713-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin W. Boyack, 2009. "Using detailed maps of science to identify potential collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(1), pages 27-44, April.
    2. Alan L. Porter & Alex S. Cohen & J. David Roessner & Marty Perreault, 2007. "Measuring researcher interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(1), pages 117-147, July.
    3. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    4. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    6. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    7. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    8. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    9. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo Jensen & Katsiaryna Lutkouskaya, 2014. "The many dimensions of laboratories’ interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 619-631, January.
    2. We Shim & Oh-jin Kwon & Yeong-ho Moon & Keun-hwan Kim, 2016. "Understanding the Dynamic Convergence Phenomenon from the Perspective of Diversity and Persistence: A Cross-Sector Comparative Analysis between the United States and South Korea," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-29, July.
    3. Michael Calver & Kate Bryant & Grant Wardell-Johnson, 2018. "Quantifying the internationality and multidisciplinarity of authors and journals using ecological statistics," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 731-748, May.
    4. Lawson, Cornelia & Soós,Sándor, 2014. "A Thematic Mobility Measure for Econometric Analysis," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201402, University of Turin.
    5. Sándor Soós & Zsófia Vida & András Schubert, 2018. "Long-term trends in the multidisciplinarity of some typical natural and social sciences, and its implications on the SSH versus STM distinction," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 795-822, March.
    6. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    7. Vilker Zucolotto Pessin & Luciana Harue Yamane & Renato Ribeiro Siman, 2022. "Smart bibliometrics: an integrated method of science mapping and bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3695-3718, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    2. Shunshun Shi & Wenyu Zhang & Shuai Zhang & Jie Chen, 2018. "Does prestige dimension influence the interdisciplinary performance of scientific entities in knowledge flow? Evidence from the e-government field," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1237-1264, November.
    3. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    4. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    5. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
    6. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    7. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    8. Jorge Mannana-Rodriguez & Elea Giménez-Toledo, 2018. "Specialization and multidisciplinarity of scholarly book publishers: differences between Spanish University Presses and other scholarly publishers," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 19-30, January.
    9. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    10. Shengli Deng & Sudi Xia, 2020. "Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 489-513, July.
    11. Jorge Mañana Rodríguez, 2017. "Disciplinarity and interdisciplinarity in citation and reference dimensions: knowledge importation and exportation taxonomy of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 617-642, February.
    12. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.
    13. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    14. Sándor Soós & Zsófia Vida & András Schubert, 2018. "Long-term trends in the multidisciplinarity of some typical natural and social sciences, and its implications on the SSH versus STM distinction," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 795-822, March.
    15. Pitambar Gautam & Ryuichi Yanagiya, 2012. "Reflection of cross-disciplinary research at Creative Research Institution (Hokkaido University) in the Web of Science database: appraisal and visualization using bibliometry," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(1), pages 101-111, October.
    16. Lorenzo Cassi & Wilfriedo Mescheba & Élisabeth Turckheim, 2014. "How to evaluate the degree of interdisciplinarity of an institution?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1871-1895, December.
    17. Juste Raimbault, 2019. "Exploration of an interdisciplinary scientific landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 617-641, May.
    18. Qiuju Zhou & Ronald Rousseau & Liying Yang & Ting Yue & Guoliang Yang, 2012. "A general framework for describing diversity within systems and similarity between systems with applications in informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 787-812, December.
    19. Lin Zhang & Beibei Sun & Zaida Chinchilla-Rodríguez & Lixin Chen & Ying Huang, 2018. "Interdisciplinarity and collaboration: on the relationship between disciplinary diversity in departmental affiliations and reference lists," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 271-291, October.
    20. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:93:y:2012:i:3:d:10.1007_s11192-012-0713-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.