IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v19y2025i1s1751157724001469.html
   My bibliography  Save this article

Integration vs segregation: Network analysis of interdisciplinarity in funded and unfunded research on infectious diseases

Author

Listed:
  • Du, Anbang
  • Head, Michael
  • Brede, Markus

Abstract

Interdisciplinary research fuels innovation. In this paper, we examine the interdisciplinarity of research output driven by funding. Considering 36 major infectious diseases, we model interdisciplinarity through temporal correlation networks based on funded and unfunded research from 1995-2022. Using hierarchical clustering, we identify coherent periods of time or regimes characterised by important research topics like vaccinations or the Zika outbreak. We establish that funded research is less interdisciplinary than unfunded research, but the effect has decreased markedly over time. In terms of network growth, we find a tendency of funded research to focus on readily established connections leading to compartmentalisation and conservatism. In contrast, unfunded research tends to be exploratory and bridge distant knowledge leading to knowledge integration. Our results show that interdisciplinary research on prominent infectious diseases like HIV and tuberculosis tends to have strong bridging effects facilitating global knowledge integration in the network. At the periphery of the network, we observe the emergence of vaccination-related and Zika-related knowledge clusters, both with limited systemic impact. We further show that despite the surge in publications related to COVID-19, its systematic impact on the disease network remains relatively low. Overall, this research provides a generalisable framework to examine the impact of funding in interdisciplinary knowledge creation. It can assist in priority setting, for example with horizon scanning for new and emerging threats to health, such as pandemic planning. Policymakers, funding agencies, and research institutions should consider revamping evaluation systems to reward interdisciplinary work and implement mechanisms that promote and support intelligent risk-taking.

Suggested Citation

  • Du, Anbang & Head, Michael & Brede, Markus, 2025. "Integration vs segregation: Network analysis of interdisciplinarity in funded and unfunded research on infectious diseases," Journal of Informetrics, Elsevier, vol. 19(1).
  • Handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001469
    DOI: 10.1016/j.joi.2024.101634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724001469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    2. Benavente, José Miguel & Crespi, Gustavo & Figal Garone, Lucas & Maffioli, Alessandro, 2012. "The impact of national research funds: A regression discontinuity approach to the Chilean FONDECYT," Research Policy, Elsevier, vol. 41(8), pages 1461-1475.
    3. Catherine Lyall & Ann Bruce & Wendy Marsden & Laura Meagher, 2013. "The role of funding agencies in creating interdisciplinary knowledge," Science and Public Policy, Oxford University Press, vol. 40(1), pages 62-71, January.
    4. Saeed Roshani & Mohammad-Reza Bagherylooieh & Melika Mosleh & Mario Coccia, 2021. "What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7859-7874, September.
    5. Rachel Heyard & Hanna Hottenrott, 2020. "The Impact of Research Funding on Knowledge Creation and Dissemination: A study of SNSF Research Grants," Papers 2011.11274, arXiv.org, revised Aug 2021.
    6. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    7. Mike Thelwall & Subreena Simrick & Ian Viney & Peter Van den Besselaar, 2023. "What is research funding, how does it influence research, and how is it recorded? Key dimensions of variation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(11), pages 6085-6106, November.
    8. Hottenrott, Hanna & Lawson, Cornelia, 2017. "Fishing for complementarities: Research grants and research productivity," International Journal of Industrial Organization, Elsevier, vol. 51(C), pages 1-38.
    9. Jian Wang & Bart Thijs & Wolfgang Glänzel, 2015. "Interdisciplinarity and Impact: Distinct Effects of Variety, Balance, and Disparity," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    10. Melika Mosleh & Saeed Roshani & Mario Coccia, 2022. "Scientific laws of research funding to support citations and diffusion of knowledge in life science," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1931-1951, April.
    11. Mikko Packalen & Jay Bhattacharya, 2020. "NIH funding and the pursuit of edge science," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(22), pages 12011-12016, June.
    12. Camilo Mora & Tristan McKenzie & Isabella M. Gaw & Jacqueline M. Dean & Hannah Hammerstein & Tabatha A. Knudson & Renee O. Setter & Charlotte Z. Smith & Kira M. Webster & Jonathan A. Patz & Erik C. Fr, 2022. "Over half of known human pathogenic diseases can be aggravated by climate change," Nature Climate Change, Nature, vol. 12(9), pages 869-875, September.
    13. Loet Leydesdorff & Caroline S. Wagner & Lutz Bornmann, 2018. "Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 567-592, February.
    14. Wayne P. Wahls, 2019. "Opinion: The National Institutes of Health needs to better balance funding distributions among US institutions," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(27), pages 13150-13154, July.
    15. Michael Park & Erin Leahey & Russell J. Funk, 2023. "Papers and patents are becoming less disruptive over time," Nature, Nature, vol. 613(7942), pages 138-144, January.
    16. Leah G. Nichols, 2014. "A topic model approach to measuring interdisciplinarity at the National Science Foundation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 741-754, September.
    17. Keisuke Okamura, 2019. "Interdisciplinarity revisited: evidence for research impact and dynamism," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
    18. Rick Rylance, 2015. "Grant giving: Global funders to focus on interdisciplinarity," Nature, Nature, vol. 525(7569), pages 313-315, September.
    19. Nees Jan van Eck & Ludo Waltman, 2009. "How to normalize cooccurrence data? An analysis of some well‐known similarity measures," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(8), pages 1635-1651, August.
    20. Alan L. Porter & Alex S. Cohen & J. David Roessner & Marty Perreault, 2007. "Measuring researcher interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(1), pages 117-147, July.
    21. Hamburg, Margaret A., 2008. "Considerations for infectious disease research and practice," Technology in Society, Elsevier, vol. 30(3), pages 383-387.
    22. Kevin J. Boudreau & Eva C. Guinan & Karim R. Lakhani & Christoph Riedl, 2016. "Looking Across and Looking Beyond the Knowledge Frontier: Intellectual Distance, Novelty, and Resource Allocation in Science," Management Science, INFORMS, vol. 62(10), pages 2765-2783, October.
    23. Liang Hu & Win-bin Huang & Yi Bu, 2024. "Interdisciplinary research attracts greater attention from policy documents: evidence from COVID-19," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    24. Davies, Benjamin & Gush, Jason & Hendy, Shaun C. & Jaffe, Adam B., 2022. "Research funding and collaboration," Research Policy, Elsevier, vol. 51(2).
    25. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    26. Alfredo Yegros-Yegros & Ismael Rafols & Pablo D’Este, 2015. "Does Interdisciplinary Research Lead to Higher Citation Impact? The Different Effect of Proximal and Distal Interdisciplinarity," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    27. Fontana, Magda & Iori, Martina & Leone Sciabolazza, Valerio & Souza, Daniel, 2022. "The interdisciplinarity dilemma: Public versus private interests," Research Policy, Elsevier, vol. 51(7).
    28. Loet Leydesdorff & Ismael Rafols, 2011. "Local emergence and global diffusion of research technologies: An exploration of patterns of network formation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(5), pages 846-860, May.
    29. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    30. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    31. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Costa, 2017. "Do interdisciplinary research teams deliver higher gains to science?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 317-336, April.
    32. Fontana, Magda & Iori, Martina & Montobbio, Fabio & Sinatra, Roberta, 2020. "New and atypical combinations: An assessment of novelty and interdisciplinarity," Research Policy, Elsevier, vol. 49(7).
    33. Yang, Alex J., 2024. "Unveiling the impact and dual innovation of funded research," Journal of Informetrics, Elsevier, vol. 18(1).
    34. Jacob, Brian A. & Lefgren, Lars, 2011. "The impact of research grant funding on scientific productivity," Journal of Public Economics, Elsevier, vol. 95(9), pages 1168-1177.
    35. Belén Álvarez-Bornstein & Fernanda Morillo & María Bordons, 2017. "Funding acknowledgments in the Web of Science: completeness and accuracy of collected data," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1793-1812, September.
    36. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    37. Biancani, Susan & Dahlander, Linus & McFarland, Daniel A. & Smith, Sanne, 2018. "Superstars in the making? The broad effects of interdisciplinary centers," Research Policy, Elsevier, vol. 47(3), pages 543-557.
    38. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Di Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    39. Lindell Bromham & Russell Dinnage & Xia Hua, 2016. "Interdisciplinary research has consistently lower funding success," Nature, Nature, vol. 534(7609), pages 684-687, June.
    40. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    41. Weishu Liu & Li Tang & Guangyuan Hu, 2020. "Funding information in Web of Science: an updated overview," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1509-1524, March.
    42. Sándor Soós & George Kampis, 2012. "Beyond the basemap of science: mapping multiple structures in research portfolios: evidence from Hungary," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 869-891, December.
    43. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    44. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    45. Rachel Heyard & Hanna Hottenrott, 2021. "The value of research funding for knowledge creation and dissemination: A study of SNSF Research Grants," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    46. Qiuju Zhou & Loet Leydesdorff, 2016. "The normalization of occurrence and Co-occurrence matrices in bibliometrics using Cosine similarities and Ochiai coefficients," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(11), pages 2805-2814, November.
    47. Lin Zhang & Ronald Rousseau & Wolfgang Glänzel, 2016. "Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1257-1265, May.
    48. repec:plo:pone00:0117727 is not listed on IDEAS
    49. Xiaolin Shi & Lada A Adamic & Belle L Tseng & Gavin S Clarkson, 2009. "The Impact of Boundary Spanning Scholarly Publications and Patents," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-7, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    2. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    3. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    4. Xin Liu & Yi Bu & Ming Li & Jiang Li, 2024. "Monodisciplinary collaboration disrupts science more than multidisciplinary collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 75(1), pages 59-78, January.
    5. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    6. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    7. Kwon, Seokbeom, 2022. "Interdisciplinary knowledge integration as a unique knowledge source for technology development and the role of funding allocation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    8. Lin Zhang & Beibei Sun & Zaida Chinchilla-Rodríguez & Lixin Chen & Ying Huang, 2018. "Interdisciplinarity and collaboration: on the relationship between disciplinary diversity in departmental affiliations and reference lists," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 271-291, October.
    9. Maryam Nakhoda & Peter Whigham & Sander Zwanenburg, 2023. "Quantifying and addressing uncertainty in the measurement of interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(11), pages 6107-6127, November.
    10. Hoang-Son Pham & Bram Vancraeynest & Hanne Poelmans & Sadia Vancauwenbergh & Amr Ali-Eldin, 2023. "Identifying interdisciplinary research in research projects," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5521-5544, October.
    11. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    12. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    13. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    14. Sándor Soós & Zsófia Vida & András Schubert, 2018. "Long-term trends in the multidisciplinarity of some typical natural and social sciences, and its implications on the SSH versus STM distinction," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 795-822, March.
    15. Shiji Chen & Yanan Guo & Alvin Shijie Ding & Yanhui Song, 2024. "Is interdisciplinarity more likely to produce novel or disruptive research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(5), pages 2615-2632, May.
    16. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.
    17. Seolmin Yang & So Young Kim, 2023. "Knowledge-integrated research is more disruptive when supported by homogeneous funding sources: a case of US federally funded research in biomedical and life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3257-3282, June.
    18. Junping Qiu & Yunlong Yu & Shiji Chen & Teng Zhao & Shanshan Wang, 2024. "Effect of Scientific Collaboration on Interdisciplinarity in Climate Change From a Scientometric Perspective," SAGE Open, , vol. 14(2), pages 21582440241, April.
    19. Xiaojing Cai & Xiaozan Lyu & Ping Zhou, 2023. "The relationship between interdisciplinarity and citation impact—a novel perspective on citation accumulation," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    20. Hongyu Zhou & Raf Guns & Tim C. E. Engels, 2022. "Are social sciences becoming more interdisciplinary? Evidence from publications 1960–2014," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1201-1221, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.