IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v5y2019i1d10.1057_s41599-019-0282-1.html
   My bibliography  Save this article

The development of ancient Chinese agricultural and water technology from 8000 BC to 1911 AD

Author

Listed:
  • Shuanglei Wu

    (The University of Queensland)

  • Yongping Wei

    (The University of Queensland)

  • Brian Head

    (The University of Queensland)

  • Yan Zhao

    (The University of Queensland)

  • Scott Hanna

    (The University of Queensland
    The University of Queensland)

Abstract

Technology developments have made significant impacts on both humans and the environment in which they live. However, there is limited whole-of-system understanding of ancient technology development. This paper aims to uncover the evolutionary pattern of the ancient Chinese agricultural technology system that focused on land and water mobilisations from 8000 BC to 1911 AD. Our findings show that agricultural technology in China transitioned through an extremely slow, S-shaped pathway, increasing only ten fold in over 8000 years. The technology system was initially driven by tangible tools (40% of growth), then by technological theories and practices that contributed more than 50% of growth. Its development was spatially inclined to the Yellow River then to the Yangtze River region, where over 45% of technologies were developed. This study provides an empirical baseline for comparative studies between pre-industrial and industrial technologies. Greater understanding of the mechanisms of technology development will be required to reorientate technology development for present and future generations.

Suggested Citation

  • Shuanglei Wu & Yongping Wei & Brian Head & Yan Zhao & Scott Hanna, 2019. "The development of ancient Chinese agricultural and water technology from 8000 BC to 1911 AD," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-16, December.
  • Handle: RePEc:pal:palcom:v:5:y:2019:i:1:d:10.1057_s41599-019-0282-1
    DOI: 10.1057/s41599-019-0282-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-019-0282-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-019-0282-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1025-1054.
    2. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    3. Aharonson, Barak S. & Schilling, Melissa A., 2016. "Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution," Research Policy, Elsevier, vol. 45(1), pages 81-96.
    4. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    5. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    6. Rotmans, J., 2005. "Societal Innovation: between dream and reality lies complexity," ERIM Inaugural Address Series Research in Management 7293, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam..
    7. Conway, Gordon R., 1987. "The properties of agroecosystems," Agricultural Systems, Elsevier, vol. 24(2), pages 95-117.
    8. Jacob L. Weisdorf, 2005. "From Foraging To Farming: Explaining The Neolithic Revolution," Journal of Economic Surveys, Wiley Blackwell, vol. 19(4), pages 561-586, September.
    9. Jianhua Wang & Yongping Wei & Shan Jiang & Yong Zhao & Yuyan Zhou & Weihua Xiao, 2017. "Understanding the Human-Water Relationship in China during 722 B.C.-1911 A.D. from a Contradiction and Co-Evolutionary Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 929-943, February.
    10. Xiaobai Shen, 2010. "Understanding the Evolution of Rice Technology in China - From Traditional Agriculture to GM Rice Today," Journal of Development Studies, Taylor & Francis Journals, vol. 46(6), pages 1026-1046.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gönenç Yücel & Catherine Miluska Chiong Meza, 2008. "Studying transition dynamics via focusing on underlying feedback interactions," Computational and Mathematical Organization Theory, Springer, vol. 14(4), pages 320-349, December.
    2. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    3. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    4. Chung-Yi Tse, 2008. "Diffusion with variable production lead times," Journal of Economics, Springer, vol. 93(2), pages 177-202, March.
    5. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    6. Geels, Frank W. & Kemp, René, 2007. "Dynamics in socio-technical systems: Typology of change processes and contrasting case studies," Technology in Society, Elsevier, vol. 29(4), pages 441-455.
    7. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    9. Miklós Antal & Ardjan Gazheli & Jeroen C.J.M. van den Bergh, 2012. "Behavioural Foundations of Sustainability Transitions. WWWforEurope Working Paper No. 3," WIFO Studies, WIFO, number 46424, April.
    10. Jacobsson, Staffan, 2008. "The emergence and troubled growth of a 'biopower' innovation system in Sweden," Energy Policy, Elsevier, vol. 36(4), pages 1491-1508, April.
    11. Fjalar J. De Haan & Briony C. Rogers, 2019. "The Multi-Pattern Approach for Systematic Analysis of Transition Pathways," Sustainability, MDPI, vol. 11(2), pages 1-30, January.
    12. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    13. Ronan Bolton & Timothy J Foxon & Stephen Hall, 2016. "Energy transitions and uncertainty: Creating low carbon investment opportunities in the UK electricity sector," Environment and Planning C, , vol. 34(8), pages 1387-1403, December.
    14. Frans Berkhout & Anna J. Wieczorek & Rob Raven, 2011. "Avoiding Environmental Convergence: A Possible Role for Sustainability Experiments in Latecomer Countries?," Institutions and Economies (formerly known as International Journal of Institutions and Economies), Faculty of Economics and Administration, University of Malaya, vol. 3(2), pages 367-385, July.
    15. Azevedo, Isabel & Delarue, Erik & Meeus, Leonardo, 2013. "Mobilizing cities towards a low-carbon future: Tambourines, carrots and sticks," Energy Policy, Elsevier, vol. 61(C), pages 894-900.
    16. Wiegmann, Paul Moritz & de Vries, Henk J. & Blind, Knut, 2017. "Multi-mode standardisation: A critical review and a research agenda," Research Policy, Elsevier, vol. 46(8), pages 1370-1386.
    17. Brozynski, Max T. & Leibowicz, Benjamin D., 2022. "A multi-level optimization model of infrastructure-dependent technology adoption: Overcoming the chicken-and-egg problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 755-770.
    18. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2022. "Investigating low-carbon pathways for hydrocarbon-dependent rentier states: Economic transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    19. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.
    20. Köhrsen, Jens, 2018. "Exogenous shocks, social skill, and power: Urban energy transitions as social fields," Energy Policy, Elsevier, vol. 117(C), pages 307-315.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:5:y:2019:i:1:d:10.1057_s41599-019-0282-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.