IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i3d10.1057_palgrave.jors.2601508.html
   My bibliography  Save this article

Modelling condition monitoring intervals: A hybrid of simulation and analytical approaches

Author

Listed:
  • W Wang

    (University of Salford)

Abstract

This paper reports on a study of modelling condition monitoring intervals. The model is formulated based upon two important concepts. One is the failure delay time concept, which is used to divide the failure process of the item into two periods, namely a normal working period followed by a failure delay time period from a defect being first identified to the actual failure. The other is the conditional residual time concept, which assumes that the residual time also depends on the history condition information obtained. Stochastic filtering theory is used to predict the residual time distribution given all monitored information obtained to date over the failure delay time period. The solution procedure is carried out in two stages. We first propose a static model that is used to determine a fixed condition monitoring interval over the item life. Once the monitored information indicates a possible abnormality of the item concerned, that is the start of the failure delay time, a dynamic approach is employed to determine the next monitoring time at the current monitoring point given that the item is not scheduled for a preventive replacement before that time. This implies that the dynamic model overrides the static model over the failure delay time since more frequent monitoring might be needed to keep the item in close attention before an appropriate replacement is made prior to failure. Two key problems are addressed in the paper. The first is which criterion function we should use in determining the monitoring check interval, and the second is the optimization process for both models, which can be solved neither analytically nor numerically since they depend on two unknown quantities, namely, the available condition information and a decision of the time to replace the item over the failure delay time. For the first problem, we propose five appealingly good criterion functions, and test them using simulations to see which one performs best. The second problem was solved using a hybrid of simulation and analytical solution procedures. We finally present a numerical example to demonstrate the modelling methodology.

Suggested Citation

  • W Wang, 2003. "Modelling condition monitoring intervals: A hybrid of simulation and analytical approaches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 273-282, March.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:3:d:10.1057_palgrave.jors.2601508
    DOI: 10.1057/palgrave.jors.2601508
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601508
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Linguo & Tang, Kwei, 1997. "Monitoring machine operations using on-line sensors," European Journal of Operational Research, Elsevier, vol. 96(3), pages 479-492, February.
    2. Sander, Peter & Wang, Wenbin, 2000. "Maintenance and reliability," International Journal of Production Economics, Elsevier, vol. 67(1), pages 1-2, August.
    3. Christer, A. H. & Wang, W., 1995. "A simple condition monitoring model for a direct monitoring process," European Journal of Operational Research, Elsevier, vol. 82(2), pages 258-269, April.
    4. W Wang & P A Scarf & M A J Smith, 2000. "On the application of a model of condition-based maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(11), pages 1218-1227, November.
    5. W Wang & A H Christer, 2000. "Towards a general condition based maintenance model for a stochastic dynamic system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(2), pages 145-155, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasool Motahari & Yasser Saeidi Sough & Hamed Aboutorab & Morteza Saberi, 2021. "Joint optimization of maintenance and inventory policies for multi-unit systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 587-607, June.
    2. Sayyideh Mehri Mousavi & Hesam Shams & Shahrzad Ahmadi, 2017. "Simultaneous optimization of repair and control-limit policy in condition-based maintenance," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 245-254, January.
    3. Ferreira, Rodrigo J.P. & de Almeida, Adiel Teixeira & Cavalcante, Cristiano A.V., 2009. "A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 905-912.
    4. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    5. Li, Heping & Zhu, Wenjin & Dieulle, Laurence & Deloux, Estelle, 2022. "Condition-based maintenance strategies for stochastically dependent systems using Nested Lévy copulas," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Wang, Ling & Chu, Jian & Mao, Weijie, 2009. "A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure," European Journal of Operational Research, Elsevier, vol. 194(1), pages 184-205, April.
    7. W Wang & B Hussin, 2009. "Plant residual time modelling based on observed variables in oil samples," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 789-796, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenbin Wang & Wenjuan Zhang, 2005. "A model to predict the residual life of aircraft engines based upon oil analysis data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 276-284, April.
    2. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    3. Wang, W. & Zhang, W., 2008. "An asset residual life prediction model based on expert judgments," European Journal of Operational Research, Elsevier, vol. 188(2), pages 496-505, July.
    4. Wang, Ling & Chu, Jian & Mao, Weijie, 2009. "A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure," European Journal of Operational Research, Elsevier, vol. 194(1), pages 184-205, April.
    5. Dieulle, L. & Berenguer, C. & Grall, A. & Roussignol, M., 2003. "Sequential condition-based maintenance scheduling for a deteriorating system," European Journal of Operational Research, Elsevier, vol. 150(2), pages 451-461, October.
    6. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    7. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    8. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    9. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    10. Bae, Suk Joo & Mun, Byeong Min & Chang, Woojin & Vidakovic, Brani, 2019. "Condition monitoring of a steam turbine generator using wavelet spectrum based control chart," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 13-20.
    11. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    12. Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
    13. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    14. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    15. L Bessegato & R Quinino & L L Ho & L Duczmal, 2011. "Variable interval sampling in economical designs for online process control of attributes with misclassification errors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1365-1375, July.
    16. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.
    17. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    18. Wang, Wenbin, 2007. "A two-stage prognosis model in condition based maintenance," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1177-1187, November.
    19. Percy, David F. & Kobbacy, Khairy A. H., 2000. "Determining economical maintenance intervals," International Journal of Production Economics, Elsevier, vol. 67(1), pages 87-94, August.
    20. Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:3:d:10.1057_palgrave.jors.2601508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.