IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v20y2021i3d10.1057_s41272-021-00314-1.html
   My bibliography  Save this article

A note on the advantage of context in Thompson sampling

Author

Listed:
  • Michael Byrd

    (Yum! Brands)

  • Ross Darrow

Abstract

Personalization has become a focal point of modern revenue management. However, it is often the case that minimal data are available to appropriately make suggestions tailored to each customer. This has led to many products making use of reinforcement learning-based algorithms to explore sets of offerings to find the best suggestions to improve conversion and revenue. Arguably the most popular of these algorithms are built on the foundation of the multi-arm bandit framework, which has shown great success across a variety of use cases. A general multi-arm bandit algorithm aims to trade-off adaptively exploring available, but under observed, recommendations, with the current known best offering. While much success has been achieved with these relatively understandable procedures, much of the airline industry is losing out on better personalized offers by ignoring the context of the transaction, as is the case in the traditional multi-arm bandit setup. Here, we explore a popular exploration heuristic, Thompson sampling, and note implementation details for multi-arm and contextual bandit variants. While the contextual bandit requires greater computational and technical complexity to include contextual features in the decision process, we illustrate the value it brings by the improvement in overall expected

Suggested Citation

  • Michael Byrd & Ross Darrow, 2021. "A note on the advantage of context in Thompson sampling," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(3), pages 316-321, June.
  • Handle: RePEc:pal:jorapm:v:20:y:2021:i:3:d:10.1057_s41272-021-00314-1
    DOI: 10.1057/s41272-021-00314-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-021-00314-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-021-00314-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul E. Green & Abba M. Krieger & Yoram Wind, 2001. "Thirty Years of Conjoint Analysis: Reflections and Prospects," Interfaces, INFORMS, vol. 31(3_supplem), pages 56-73, June.
    2. Ben Vinod & Richard Ratliff & Vikram Jayaram, 2018. "An approach to offer management: maximizing sales with fare products and ancillaries," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 17(2), pages 91-101, April.
    3. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Merja Halme & Kari Linden & Kimmo Kääriä, 2009. "Patients’ Preferences for Generic and Branded Over-the-Counter Medicines," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 2(4), pages 243-255, December.
    3. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    4. Marianne Bertrand & Dean Karlin & Sendhil Mullainathan & Eldar Shafir & Jonathan Zinman, 2005. "What's Psychology Worth? A Field Experiment in the Consumer Credit Market," NBER Working Papers 11892, National Bureau of Economic Research, Inc.
    5. Adrienne Davidson & Samantha Burns & Linda White & Delaine Hampton & Michal Perlman, 2020. "Child care policy and child care burden: Policy feedback effects and distributive implications of regulatory decisions," Journal of Behavioral Public Administration, Center for Experimental and Behavioral Public Administration, vol. 3(2).
    6. Atallah, Shadi S. & Huang, Ju-Chin & Leahy, Jessica & Bennett, Karen, 2020. "Preference Heterogeneity and Neighborhood Effect in Invasive Species Control: The Case of Glossy Buckthorn in New Hampshire and Maine Forests," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304623, Agricultural and Applied Economics Association.
    7. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    8. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    9. Sahar Zarmehri & Ephraim M. Hanks & Lin Lin, 2021. "A Sample Covariance-Based Approach For Spatial Binary Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 220-249, June.
    10. Kevin K. Wang & Michael D. Wittman & Adam Bockelie, 2021. "Dynamic offer generation in airline revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(6), pages 654-668, December.
    11. Eleanor McDonnell Feit & Mark A. Beltramo & Fred M. Feinberg, 2010. "Reality Check: Combining Choice Experiments with Market Data to Estimate the Importance of Product Attributes," Management Science, INFORMS, vol. 56(5), pages 785-800, May.
    12. Yoon, Moon Gil & Yoon, Duk Young & Yang, Tae Won, 2006. "Impact of e-business on air travel markets: Distribution of airline tickets in Korea," Journal of Air Transport Management, Elsevier, vol. 12(5), pages 253-260.
    13. Olson, Erik L., 2022. "‘Sustainable’ marketing mixes and the paradoxical consequences of good intentions," Journal of Business Research, Elsevier, vol. 150(C), pages 389-398.
    14. Norbert Bajkó & Zsolt Fülöp & Kinga Nagyné Pércsi, 2022. "Changes in the Innovation- and Marketing-Habits of Family SMEs in the Foodstuffs Industry, Caused by the Coronavirus Pandemic in Hungary," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    15. Daniel Hoppe & Helen Keller & Felix Horstmann, 2022. "Got Employer Image? How Applicants Choose Their Employer," Corporate Reputation Review, Palgrave Macmillan, vol. 25(2), pages 139-159, May.
    16. Kim, Min Sung & Kim, Eun & Hwang, ShinYoung & Kim, Junghwan & Kim, Seongcheol, 2017. "Willingness to pay for over-the-top services in China and Korea," Telecommunications Policy, Elsevier, vol. 41(3), pages 197-207.
    17. Carter Allen & Yuzhou Chang & Brian Neelon & Won Chang & Hang J. Kim & Zihai Li & Qin Ma & Dongjun Chung, 2023. "A Bayesian multivariate mixture model for high throughput spatial transcriptomics," Biometrics, The International Biometric Society, vol. 79(3), pages 1775-1787, September.
    18. James Cochran & David Curry & Rajesh Radhakrishnan & Jon Pinnell, 2014. "Political engineering: optimizing a U.S. Presidential candidate’s platform," Annals of Operations Research, Springer, vol. 215(1), pages 63-87, April.
    19. Heap, Shaun P. Hargreaves & Koop, Christel & Matakos, Konstantinos & Unan, Asli & Weber, Nina Sophie, 2021. "We Cannot Disagree Forever! Reality Polarization and Citizens’ Post-Pandemic Fiscal Adjustment Preferences," SocArXiv 69tup, Center for Open Science.
    20. Oyama, Yuki & Murakami, Daisuke & Krueger, Rico, 2024. "A hierarchical Bayesian logit model for spatial multivariate choice data," Journal of choice modelling, Elsevier, vol. 52(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:20:y:2021:i:3:d:10.1057_s41272-021-00314-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.