IDEAS home Printed from https://ideas.repec.org/a/pal/assmgt/v11y2010i2d10.1057_jam.2010.9.html
   My bibliography  Save this article

A robust optimization approach to pension fund management

Author

Listed:
  • Garud Iyengar
  • Alfred Ka Chun Ma

    (Department of Finance)

Abstract

In this article, we propose a robust optimization-based framework for defined benefit pension fund management. We show that this framework allows one to flexibly model many features of the pension fund management problem. Our approach is a computationally tractable alternative to the stochastic programming-based approaches. We illustrate the important features of the robust approach using a specific numerical example.

Suggested Citation

  • Garud Iyengar & Alfred Ka Chun Ma, 2010. "A robust optimization approach to pension fund management," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 163-177, June.
  • Handle: RePEc:pal:assmgt:v:11:y:2010:i:2:d:10.1057_jam.2010.9
    DOI: 10.1057/jam.2010.9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jam.2010.9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/jam.2010.9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Myers, Stewart C. & Majluf, Nicholas S., 1984. "Corporate financing and investment decisions when firms have information that investors do not have," Journal of Financial Economics, Elsevier, vol. 13(2), pages 187-221, June.
    2. Chang,Fwu-Ranq, 2009. "Stochastic Optimization in Continuous Time," Cambridge Books, Cambridge University Press, number 9780521541947, Enero-Abr.
    3. repec:dgr:rugsom:00a52 is not listed on IDEAS
    4. Vlerk, Maarten H. van der & Klein Haneveld, W.K. & Drijver, S.J., 2000. "Asset liability management modeling using multi-stage mixed-integer stochastic programming," Research Report 00A52, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    5. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    6. G. Consigli & M. Dempster, 1998. "Dynamic stochastic programmingfor asset-liability management," Annals of Operations Research, Springer, vol. 81(0), pages 131-162, June.
    7. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    8. Endre Boros & András Prékopa, 1989. "Closed Form Two-Sided Bounds for Probabilities that At Least r and Exactly r Out of n Events Occur," Mathematics of Operations Research, INFORMS, vol. 14(2), pages 317-342, May.
    9. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    10. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    2. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    3. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    4. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    5. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    6. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    7. Jobst, Norbert J. & Zenios, Stavros A., 2005. "On the simulation of portfolios of interest rate and credit risk sensitive securities," European Journal of Operational Research, Elsevier, vol. 161(2), pages 298-324, March.
    8. Uri Ron, 2000. "A Practical Guide to Swap Curve Construction," Staff Working Papers 00-17, Bank of Canada.
    9. Houweling, Patrick & Hoek, Jaap & Kleibergen, Frank, 2001. "The joint estimation of term structures and credit spreads," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 297-323, July.
    10. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    11. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    12. D’Amico, Stefania & Kim, Don H. & Wei, Min, 2018. "Tips from TIPS: The Informational Content of Treasury Inflation-Protected Security Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 395-436, February.
    13. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    14. Souta Nakatani & Kiyohiko G. Nishimura & Taiga Saito & Akihiko Takahashi, 2020. "Interest Rate Model with Investor Attitude and Text Mining (Published in IEEE Access)," CARF F-Series CARF-F-479, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    16. Lutz Kruschwitz, 2018. "Das Problem der Anschlussverzinsung," Schmalenbach Journal of Business Research, Springer, vol. 70(1), pages 9-45, March.
    17. Antonio Díaz & Francisco Jareño & Eliseo Navarro, 2022. "Yield curve data choice and potential moral hazard: An empirical exercise on pricing callable bonds," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2124-2145, April.
    18. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2016. "The stochastic string model as a unifying theory of the term structure of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 217-237.
    19. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    20. Ram Bhar & Carl Chiarella, 1996. "Construction of Zero-Coupon Yield Curve From Coupon Bond Yield Using Australian Data," Working Paper Series 70, Finance Discipline Group, UTS Business School, University of Technology, Sydney.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:assmgt:v:11:y:2010:i:2:d:10.1057_jam.2010.9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.