IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v24y2018i1p147-168.html
   My bibliography  Save this article

Plan maestro de producción basado en programación lineal entera para una empresa de productos químicos || Master Production Scheduling Based on Integer Linear Programming for a Chemical Company

Author

Listed:
  • Reyes Zotelo, Yunuem

    (Sección de Estudios de Posgrado e Investigación. Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas, Instituto Politécnico Nacional (México))

  • Mula, Josefa

    (Centro de Investigación en Gestión e Ingeniería de Producción. Universitat Politècnica de València (España))

  • Díaz-Madroñero, Manuel

    (Centro de Investigación en Gestión e Ingeniería de Producción. Universitat Politècnica de València (España))

  • Gutiérrez González, Eduardo

    (Sección de Estudios de Posgrado e Investigación. Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas, Instituto Politécnico Nacional (México))

Abstract

En este trabajo se propone un modelo de programación lineal entera para planificar la producción de un conjunto de artículos finales con demanda independiente. El modelo para la planificación maestra de producción (PMP) está diseñado considerando los costes de producción e inventario, así como las restricciones definidas por el mismo proceso productivo en cuanto a instalaciones y tiempos de producción. El objetivo del modelo propuesto es la minimización de los costes implicados; concretamente, el tiempo ocioso y extra de los recursos, así como la consideración de un nivel mínimo de servicio ligado a la demanda diferida. La validación del modelo considera datos pertenecientes a la demanda de cada producto en un horizonte de 12 semanas y compara cinco escenarios en los que se modifican algunos aspectos del sistema y diferentes niveles de servicio. Por último, los resultados obtenidos para cada uno de los escenarios exponen la mejora obtenida por el modelo propuesto respecto al procedimiento actual en la empresa objeto de estudio. || In this work, we propose an integer linear programming model for production scheduling of a group of finished products with independent demand. The model for the master production scheduling (MPS) is designed by considering production and inventory costs, as well as the productive process constraints regarding installations and production times. The aim of the proposed model is the minimization of the costs involved; specifically, undertime and overtime costs of resources, as well as the consideration of a minimum service level related to the deferred demand. The validation of the model considers data belonging to the demand of each product in a 12-week planning horizon and compares five scenarios in which some characteristics of the system and different service levels are modified. Finally, the results obtained for each one of the scenarios expose the improvement obtained by the proposed model with regard to the current procedure in the studied company.

Suggested Citation

  • Reyes Zotelo, Yunuem & Mula, Josefa & Díaz-Madroñero, Manuel & Gutiérrez González, Eduardo, 2017. "Plan maestro de producción basado en programación lineal entera para una empresa de productos químicos || Master Production Scheduling Based on Integer Linear Programming for a Chemical Company," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 147-168, Diciembre.
  • Handle: RePEc:pab:rmcpee:v:24:y:2018:i:1:p:147-168
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2885
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2885/2280
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. S. Lasdon & R. C. Terjung, 1971. "An Efficient Algorithm for Multi-Item Scheduling," Operations Research, INFORMS, vol. 19(4), pages 946-969, August.
    2. Mahmood Ul Hassan & Pär Stockhammar, 2016. "Fitting probability distributions to economic growth: a maximum likelihood approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1583-1603, July.
    3. Mula, J. & Poler, R. & Garcia-Sabater, J.P. & Lario, F.C., 2006. "Models for production planning under uncertainty: A review," International Journal of Production Economics, Elsevier, vol. 103(1), pages 271-285, September.
    4. Bernard P. Dzielinski & Ralph E. Gomory, 1965. "Optimal Programming of Lot Sizes, Inventory and Labor Allocations," Management Science, INFORMS, vol. 11(9), pages 874-890, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Wu & Zhe Liang & Canrong Zhang, 2018. "Analytics Branching and Selection for the Capacitated Multi-Item Lot Sizing Problem with Nonidentical Machines," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 236-258, May.
    2. Bouchriha, Hanen & Ouhimmou, Mustapha & D'Amours, Sophie, 2007. "Lot sizing problem on a paper machine under a cyclic production approach," International Journal of Production Economics, Elsevier, vol. 105(2), pages 318-328, February.
    3. Roy E. Marsten, 1975. "The Use of the Box Step Method in Discrete Optimization," NBER Working Papers 0086, National Bureau of Economic Research, Inc.
    4. S. Selcuk Erenguc & H. Murat Mercan, 1990. "A multifamily dynamic lot‐sizing model with coordinated replenishments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 539-558, August.
    5. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    6. Bitran, Gabriel R. & Tirupati, Devanath., 1989. "Hierarchical production planning," Working papers 3017-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    7. Tom Vogel & Bernardo Almada-Lobo & Christian Almeder, 2017. "Integrated versus hierarchical approach to aggregate production planning and master production scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 193-229, January.
    8. James R. Bradley & Bruce C. Arntzen, 1999. "The Simultaneous Planning of Production, Capacity, and Inventory in Seasonal Demand Environments," Operations Research, INFORMS, vol. 47(6), pages 795-806, December.
    9. Borodin, Valeria & Dolgui, Alexandre & Hnaien, Faicel & Labadie, Nacima, 2016. "Component replenishment planning for a single-level assembly system under random lead times: A chance constrained programming approach," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 79-86.
    10. Pham, An & Jin, Tongdan & Novoa, Clara & Qin, Jin, 2019. "A multi-site production and microgrid planning model for net-zero energy operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 260-274.
    11. Jing Wu & Lijie Su & Gongshu Wang & Yang Yang, 2024. "Approximated Dynamic Programming for Production and Inventory Planning Problem in Cold Rolling Process of Steel Production," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
    12. Laurent Lim, Lâm & Alpan, Gülgün & Penz, Bernard, 2014. "Reconciling sales and operations management with distant suppliers in the automotive industry: A simulation approach," International Journal of Production Economics, Elsevier, vol. 151(C), pages 20-36.
    13. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    14. Unai Aldasoro & María Merino & Gloria Pérez, 2019. "Time consistent expected mean-variance in multistage stochastic quadratic optimization: a model and a matheuristic," Annals of Operations Research, Springer, vol. 280(1), pages 151-187, September.
    15. Nascimento, Mariá C.V. & Resende, Mauricio G.C. & Toledo, Franklina M.B., 2010. "GRASP heuristic with path-relinking for the multi-plant capacitated lot sizing problem," European Journal of Operational Research, Elsevier, vol. 200(3), pages 747-754, February.
    16. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    17. Degraeve, Z. & Jans, R.F., 2003. "Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-026-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Chia-Nan Wang & Nhat-Luong Nhieu & Trang Thi Thu Tran, 2021. "Stochastic Chebyshev Goal Programming Mixed Integer Linear Model for Sustainable Global Production Planning," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    19. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    20. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.

    More about this item

    Keywords

    planificación de la producción; plan maestro de producción (PMP); programación lineal entera; industria química; production planning; master production scheduling (MPS); integer linear programming; chemical industry;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L00 - Industrial Organization - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:24:y:2018:i:1:p:147-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.