IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/0086.html
   My bibliography  Save this paper

The Use of the Box Step Method in Discrete Optimization

Author

Listed:
  • Roy E. Marsten

Abstract

The Boxstep method is used to maximize Lagrangean functions in the context of a branch-and-bound algorithm for the general discrete optimization problem. Results are presented for three applications: facility location, multi-item production scheduling, and single machine scheduling. The performance of the Boxstep method is contrasted with that of the subgradient optimization method.

Suggested Citation

  • Roy E. Marsten, 1975. "The Use of the Box Step Method in Discrete Optimization," NBER Working Papers 0086, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:0086
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w0086.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bernard P. Dzielinski & Ralph E. Gomory, 1965. "Optimal Programming of Lot Sizes, Inventory and Labor Allocations," Management Science, INFORMS, vol. 11(9), pages 874-890, July.
    2. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    3. L. S. Lasdon & R. C. Terjung, 1971. "An Efficient Algorithm for Multi-Item Scheduling," Operations Research, INFORMS, vol. 19(4), pages 946-969, August.
    4. Arthur M. Geoffrion, 1970. "Elements of Large-Scale Mathematical Programming Part I: Concepts," Management Science, INFORMS, vol. 16(11), pages 652-675, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    2. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    3. Hatem Ben Amor & Jacques Desrosiers & José Manuel Valério de Carvalho, 2006. "Dual-Optimal Inequalities for Stabilized Column Generation," Operations Research, INFORMS, vol. 54(3), pages 454-463, June.
    4. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    2. Okhrin, Irena & Richter, Knut, 2011. "The linear dynamic lot size problem with minimum order quantity," International Journal of Production Economics, Elsevier, vol. 133(2), pages 688-693, October.
    3. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    4. Toledo, Franklina Maria Bragion & Armentano, Vinicius Amaral, 2006. "A Lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1070-1083, December.
    5. S. Selcuk Erenguc & H. Murat Mercan, 1990. "A multifamily dynamic lot‐sizing model with coordinated replenishments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 539-558, August.
    6. Drexl, Andreas & Haase, Knut, 1992. "A new type of model for multi-item capacitated dynamic lotsizing and scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 286, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Tom Vogel & Bernardo Almada-Lobo & Christian Almeder, 2017. "Integrated versus hierarchical approach to aggregate production planning and master production scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 193-229, January.
    8. Reyes Zotelo, Yunuem & Mula, Josefa & Díaz-Madroñero, Manuel & Gutiérrez González, Eduardo, 2017. "Plan maestro de producción basado en programación lineal entera para una empresa de productos químicos || Master Production Scheduling Based on Integer Linear Programming for a Chemical Company," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 147-168, Diciembre.
    9. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    10. Degraeve, Z. & Jans, R.F., 2003. "Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-026-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Tao Wu & Zhe Liang & Canrong Zhang, 2018. "Analytics Branching and Selection for the Capacitated Multi-Item Lot Sizing Problem with Nonidentical Machines," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 236-258, May.
    12. Karina Copil & Martin Wörbelauer & Herbert Meyr & Horst Tempelmeier, 2017. "Simultaneous lotsizing and scheduling problems: a classification and review of models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 1-64, January.
    13. Bouchriha, Hanen & Ouhimmou, Mustapha & D'Amours, Sophie, 2007. "Lot sizing problem on a paper machine under a cyclic production approach," International Journal of Production Economics, Elsevier, vol. 105(2), pages 318-328, February.
    14. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Carsten Jordan & Andreas Drexl, 1998. "Discrete Lotsizing and Scheduling by Batch Sequencing," Management Science, INFORMS, vol. 44(5), pages 698-713, May.
    17. Zeger Degraeve & Raf Jans, 2007. "A New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times," Operations Research, INFORMS, vol. 55(5), pages 909-920, October.
    18. Rapine, Christophe & Penz, Bernard & Gicquel, Céline & Akbalik, Ayse, 2018. "Capacity acquisition for the single-item lot sizing problem under energy constraints," Omega, Elsevier, vol. 81(C), pages 112-122.
    19. Mathieu Van Vyve, 2007. "Algorithms for Single-Item Lot-Sizing Problems with Constant Batch Size," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 594-613, August.
    20. Jordan, Carsten & Drexl, Andreas, 1994. "Lotsizing and scheduling by batch sequencing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 343, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:0086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.