IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A Comparison between General Population Mortality and Life Tables for Insurance in Mexico under Gender Proportion Inequality || Una comparación entre la mortalidad de la población general y las tablas de vida de los seguros en México ante porcentajes desiguales de género

Listed author(s):
  • Ornelas, Arelly


    (Department of Econometrics, Riskcenter-IREA. Universitat de Barcelona (España))

  • Guillén, Montserrat


    (Department of Econometrics, Riskcenter-IREA. Universitat de Barcelona (España))

We model the mortality behavior of the general population in Mexico using data from 1990 to 2009 and compare it to the mortality assumed in the tables used in Mexico for insured lives. We _t a Lee-Carter model, a Renshaw-Haberman model and an Age-Period-Cohort model. The data used are drawn from the Mexican National Institute of Statistics and Geography (INEGI) and the National Population Council (CONAPO). We also fit a Brass-type relational model to compare gaps between general population mortality and the mortality estimates for the insured population used by the National Insurance and Finance Commission in Mexico. As the life tables for insured lives are unisex, i.e. they do not differentiate between men and women, we assume various sex ratios in the mortality tables for insured lives. We compare our results with those obtained for Switzerland and observe very similar outcomes. We emphasize the limitations of the mortality tables used by insurance companies in Mexico. We also discuss the bias incurred when using unisex mortality tables if the proportion of male and female policyholders in an insurance company is not balanced. || Interesados en conocer las diferencias entre la mortalidad general y la de un subgrupo de la población, como son los asegurados en una compañía de seguros, hemos ajustado un modelo relacional Brass-Type. Para ello, en primer lugar, hemos modelado el comportamiento de la mortalidad de la población general de México entre los años 1990 y 2009. Hemos ajustado un modelo Lee-Carter, un modelo Renshaw-Haberman y un modelo edad-período-cohorte. Los datos utilizados proceden del Instituto Nacional de Estadística y Geografía (INEGI) y el Consejo Nacional de Población (CONAPO). Una vez estimadas las tasas de mortalidad se han comparado con la mortalidad asumida por las compañías aseguradoras mexicanas. Estas tasas de mortalidad han sido calculadas por la Comisión Nacional de Seguros y Finanzas de México. Como las tablas de mortalidad del seguro de vida son unisex, es decir, que no distinguen entre hombres y mujeres, hemos creado diferente escenarios modificando el porcentaje de hombres y mujeres en las tablas de mortalidad. Comparamos los parámetros estimados con los parámetros obtenidos en un análisis con la población Suiza y se observan resultados muy similares. Finalmente, hacemos hincapié en las limitaciones de las tablas de mortalidad utilizadas por las compañías de seguros en México y se analiza el sesgo cuando la proporción de los asegurados masculinos y femeninos en una compañía de seguros no está equilibrada.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Article provided by Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration in its journal Revista de Métodos Cuantitativos para la Economía y la Empresa.

Volume (Year): 16 (2013)
Issue (Month): 1 (December)
Pages: 47-67

in new window

Handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:47-67
Contact details of provider: Postal:
Carretera de Utrera km.1, 41013 Sevilla

Phone: + 34 954 34 8913
Fax: + 34 954 34 9339
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Arthur Renshaw & Steven Haberman, 2003. "Lee-Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137.
  2. Debón, A. & Montes, F. & Puig, F., 2008. "Modelling and forecasting mortality in Spain," European Journal of Operational Research, Elsevier, vol. 189(3), pages 624-637, September.
  3. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
  4. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
  5. Guillén, Montserrat, 2012. "Sexless and beautiful data: from quantity to quality," Annals of Actuarial Science, Cambridge University Press, vol. 6(02), pages 231-234, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:47-67. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Publicación Digital - UPO)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.