IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i3p627-643..html
   My bibliography  Save this article

A structural break test for extremal dependence in β-mixing random vectors

Author

Listed:
  • Y Hoga

Abstract

SummaryWe derive a structural break test for extremal dependence in $\beta$-mixing, possibly high-dimensional random vectors with either asymptotically dependent or asymptotically independent components. Existing tests require serially independent observations with asymptotically dependent components. To avoid estimating a long-run variance, we use self-normalization, which obviates the need to estimate the coefficient of tail dependence when components are asymptotically independent. Simulations show favourable empirical size and power of the test, which we apply to S&P 500 and DAX log-returns. We find evidence for one break in the coefficient of tail dependence for the upper and lower joint tail at the beginning of the 2007–08 financial crisis, leading to more extremal co-movement.

Suggested Citation

  • Y Hoga, 2018. "A structural break test for extremal dependence in β-mixing random vectors," Biometrika, Biometrika Trust, vol. 105(3), pages 627-643.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:3:p:627-643.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy030
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    2. Yannick Hoga, 2017. "Testing for changes in (extreme) VaR," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 23-51, February.
    3. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    4. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    5. Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
    6. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    7. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    8. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    9. Vogelsang, Timothy J., 1997. "Wald-Type Tests for Detecting Breaks in the Trend Function of a Dynamic Time Series," Econometric Theory, Cambridge University Press, vol. 13(6), pages 818-848, December.
    10. Shao, Xiaofeng & Zhang, Xianyang, 2010. "Testing for Change Points in Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1228-1240.
    11. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    12. Ting Zhang & Liliya Lavitas, 2018. "Unsupervised Self-Normalized Change-Point Testing for Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 637-648, April.
    13. Anthony W. Ledford & Jonathan A. Tawn, 2003. "Diagnostics for dependence within time series extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 521-543, May.
    14. Wied, Dominik & Krämer, Walter & Dehling, Herold, 2012. "Testing For A Change In Correlation At An Unknown Point In Time Using An Extended Functional Delta Method," Econometric Theory, Cambridge University Press, vol. 28(3), pages 570-589, June.
    15. Campbell, Rachel A.J. & Forbes, Catherine S. & Koedijk, Kees G. & Kofman, Paul, 2008. "Increasing correlations or just fat tails?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 287-309, March.
    16. Hoga, Yannick, 2017. "Change Point Tests For The Tail Index Of Β-Mixing Random Variables," Econometric Theory, Cambridge University Press, vol. 33(4), pages 915-954, August.
    17. Peng, L., 1999. "Estimation of the coefficient of tail dependence in bivariate extremes," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 399-409, July.
    18. Davis, Richard A. & Mikosch, Thomas & Cribben, Ivor, 2012. "Towards estimating extremal serial dependence via the bootstrapped extremogram," Journal of Econometrics, Elsevier, vol. 170(1), pages 142-152.
    19. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannick Hoga, 2022. "Quantifying the data-dredging bias in structural break tests," Statistical Papers, Springer, vol. 63(1), pages 143-155, February.
    2. Zifeng Zhao & Feiyu Jiang & Xiaofeng Shao, 2022. "Segmenting time series via self‐normalisation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1699-1725, November.
    3. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    4. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    5. Ji-Eun Choi & Dong Wan Shin, 2022. "Quantile correlation coefficient: a new tail dependence measure," Statistical Papers, Springer, vol. 63(4), pages 1075-1104, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    2. Arnold Polanski & Evarist Stoja & Ching‐Wai (Jeremy) Chiu, 2021. "Tail risk interdependence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5499-5511, October.
    3. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    5. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
    6. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    7. Philipp Hartmann & Stefan Straetmans & Casper de Vries, 2007. "Banking System Stability. A Cross-Atlantic Perspective," NBER Chapters, in: The Risks of Financial Institutions, pages 133-188, National Bureau of Economic Research, Inc.
    8. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.
    9. Lehtomaa, Jaakko & Resnick, Sidney I., 2020. "Asymptotic independence and support detection techniques for heavy-tailed multivariate data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 262-277.
    10. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    11. Lazar, Emese & Wang, Shixuan & Xue, Xiaohan, 2023. "Loss function-based change point detection in risk measures," European Journal of Operational Research, Elsevier, vol. 310(1), pages 415-431.
    12. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    13. Zhang, Qingzhao & Li, Deyuan & Wang, Hansheng, 2013. "A note on tail dependence regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 163-172.
    14. Marta Ferreira & Helena Ferreira, 2012. "On extremal dependence: some contributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 566-583, September.
    15. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    16. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    17. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    18. Pais, Amelia & Stork, Philip A., 2011. "Contagion risk in the Australian banking and property sectors," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 681-697, March.
    19. Cumperayot, Phornchanok & Kouwenberg, Roy, 2013. "Early warning systems for currency crises: A multivariate extreme value approach," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 151-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:3:p:627-643.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.