IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v21y2012i3p566-583.html
   My bibliography  Save this article

On extremal dependence: some contributions

Author

Listed:
  • Marta Ferreira
  • Helena Ferreira

Abstract

The usual coefficients of tail dependence are based on exceedances of high values. These extremal events are useful and widely used in literature but an adverse situation may also occur with the upcrossing of a high level. In this context we define upcrossings-tail dependence coefficients and analyze all types of dependence coming out. We will prove that these coefficients are related to multivariate tail dependence coefficients already known in literature. We shall see that the upcrossings-tail dependence coefficients have the interesting feature of congregating both “temporal” and “spatial” dependence. The coefficients of tail dependence can also be applied to stationary sequences and hence measure the tail dependence in time. Results concerning connections with the extremal index and the upcrossings index as well as with local dependence conditions will be stated. Several illustrative examples will be exploited and a small note on inference will be given by presenting estimators derived from the stated results and respective properties. Copyright Sociedad de Estadística e Investigación Operativa 2012

Suggested Citation

  • Marta Ferreira & Helena Ferreira, 2012. "On extremal dependence: some contributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 566-583, September.
  • Handle: RePEc:spr:testjl:v:21:y:2012:i:3:p:566-583
    DOI: 10.1007/s11749-011-0261-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-011-0261-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-011-0261-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non‐parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335, June.
    2. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    3. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    4. Peng, L., 1999. "Estimation of the coefficient of tail dependence in bivariate extremes," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 399-409, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Sebastião & A. Martins & H. Ferreira & L. Pereira, 2013. "Estimating the upcrossings index," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 549-579, November.
    2. Ferreira, Helena & Ferreira, Marta, 2014. "Extremal behavior of pMAX processes," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 46-57.
    3. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.
    4. Helena Ferreira & Marta Ferreira, 2021. "Tail dependence and smoothness of time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 198-210, March.
    5. Ferreira Helena & Ferreira Marta, 2022. "The stopped clock model," Dependence Modeling, De Gruyter, vol. 10(1), pages 48-57, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qingzhao & Li, Deyuan & Wang, Hansheng, 2013. "A note on tail dependence regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 163-172.
    2. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    3. Y Hoga, 2018. "A structural break test for extremal dependence in β-mixing random vectors," Biometrika, Biometrika Trust, vol. 105(3), pages 627-643.
    4. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    5. Raza, Hamid & Wu, Weiou, 2018. "Quantile dependence between the stock, bond and foreign exchange markets – Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 286-296.
    6. Yuri Salazar & Wing Ng, 2015. "Nonparametric estimation of general multivariate tail dependence and applications to financial time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 121-158, March.
    7. Helena Ferreira & Marta Ferreira, 2021. "Tail dependence and smoothness of time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 198-210, March.
    8. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    9. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    10. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate conditional versions of Spearman's rho and related measures of tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1123-1140, July.
    11. Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 78(C).
    12. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    13. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    14. Adlane Haffar & Éric Le Fur, 2022. "Dependence structure of CAT bonds and portfolio diversification: a copula-GARCH approach," Journal of Asset Management, Palgrave Macmillan, vol. 23(4), pages 297-309, July.
    15. Liu, Aiai & Hou, Yanxi & Peng, Liang, 2015. "Interval estimation for a measure of tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 294-305.
    16. Benjamin Hippert & André Uhde & Sascha Tobias Wengerek, 2019. "Determinants of CDS trading on major banks," Working Papers Dissertations 51, Paderborn University, Faculty of Business Administration and Economics.
    17. Mikael Escobar-Bach & Yuri Goegebeur & Armelle Guillou & Alexandre You, 2017. "Bias-corrected and robust estimation of the bivariate stable tail dependence function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 284-307, June.
    18. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.
    19. Lehtomaa, Jaakko & Resnick, Sidney I., 2020. "Asymptotic independence and support detection techniques for heavy-tailed multivariate data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 262-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:21:y:2012:i:3:p:566-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.