IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6721d10.1038_17789.html
   My bibliography  Save this article

Relative impacts of human-induced climate change and natural climate variability

Author

Listed:
  • Mike Hulme

    (Climatic Research Unit, School of Environmental Sciences, University of East Anglia)

  • Elaine M. Barrow

    (Climatic Research Unit, School of Environmental Sciences, University of East Anglia)

  • Nigel W. Arnell

    (University of Southampton)

  • Paula A. Harrison

    (Environmental Change Unit, University of Oxford)

  • Timothy C. Johns

    (Hadley Centre for Climate Prediction and Research, The UK Meteorological Office)

  • Thomas E. Downing

    (Environmental Change Unit, University of Oxford)

Abstract

Assessments of the regional impacts of human-induced climate change on a wide range of social and environmental systems are fundamental for determining the appropriate policy responses to climate change1,2,3. Yet regional-scale impact assessments are fraught with difficulties, such as the uncertainties of regional climate-change prediction4, the specification of appropriate environmental-response models5, and the interpretation of impact results in the context of future socio-economic and technological change6. The effects of such confounding factors on estimates of climate-change impacts have only been poorly explored3,4,5,6,7. Here we use results from recent global climate simulations8 and two environmental response models9,10 to consider systematically the effects of natural climate variability (30-year timescales) and future climate-change uncertainties on river runoff and agricultural potential in Europe. We find that, for some regions, the impacts of human-induced climate change by 2050 will be undetectable relative to those due to natural multi-decadal climate variability. If misleading assessments of—and inappropriate adaptation strategies to—climate-change impacts are to be avoided, future studies should consider the impacts of natural multi-decadal climate variability alongside those of human-induced climate change.

Suggested Citation

  • Mike Hulme & Elaine M. Barrow & Nigel W. Arnell & Paula A. Harrison & Timothy C. Johns & Thomas E. Downing, 1999. "Relative impacts of human-induced climate change and natural climate variability," Nature, Nature, vol. 397(6721), pages 688-691, February.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6721:d:10.1038_17789
    DOI: 10.1038/17789
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/17789
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/17789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harrison, Matthew T. & Cullen, Brendan R. & Rawnsley, Richard P., 2016. "Modelling the sensitivity of agricultural systems to climate change and extreme climatic events," Agricultural Systems, Elsevier, vol. 148(C), pages 135-148.
    2. Martinsohn, Maria & Hansen, Heiko, 2012. "The Impact of Climate Change on the Economics of Dairy Farming – a Review and Evaluation," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61(2).
    3. Sulin Tao & Shuanghe Shen & Yuhong Li & Qi Wang & Ping Gao & Isaac Mugume, 2016. "Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar," Sustainability, MDPI, vol. 8(3), pages 1-23, February.
    4. Yanling Song & Chunyi Wang & Hans W. Linderholm & Jinfeng Tian & Ying Shi & Jinxia Xu & Yanju Liu, 2019. "Agricultural Adaptation to Global Warming in the Tibetan Plateau," IJERPH, MDPI, vol. 16(19), pages 1-11, September.
    5. Ludwig, Fulco & Asseng, Senthold, 2006. "Climate change impacts on wheat production in a Mediterranean environment in Western Australia," Agricultural Systems, Elsevier, vol. 90(1-3), pages 159-179, October.
    6. Genesis Yengoh & Augustin Tchuinte & Frederick Armah & Justice Odoi, 2010. "Impact of prolonged rainy seasons on food crop production in Cameroon," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(8), pages 825-841, December.
    7. Kerber, Samuel W. & Gilbert, Alexander Q. & Deinert, Mark R. & Bazilian, Morgan D., 2021. "Understanding the nexus of energy, environment and conflict: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Marco Moriondo & Marco Bindi & Zbigniew Kundzewicz & M. Szwed & A. Chorynski & P. Matczak & M. Radziejewski & D. McEvoy & Anita Wreford, 2010. "Impact and adaptation opportunities for European agriculture in response to climatic change and variability," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 657-679, October.
    9. A. B. Dariane & E. Pouryafar, 2021. "Quantifying and projection of the relative impacts of climate change and direct human activities on streamflow fluctuations," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    10. Quiroga, Sonia & Iglesias, Ana, 2007. "Projections of economic impacts of climate change in agriculture in Europe," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 7(14), pages 1-18.
    11. BEN ZAIED, YOUNES & Zouabi, Oussama, 2015. "Climate change impacts on agriculture: A panel cointegration approach and application to Tunisia," MPRA Paper 64711, University Library of Munich, Germany.
    12. Martinsohn, Maria & Hansen, Heiko, 2012. "The Impact of Climate Change on the Economics of Dairy Farming – a Review and Evaluation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(02), pages 1-16, May.
    13. Cha Zhao & François Brissette, 2022. "Impacts of large-scale oscillations on climate variability over North America," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    14. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    15. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.
    16. Krause, Jette, 2007. "Agricultural yield expectations under climate change - a Bayesian approach," 101st Seminar, July 5-6, 2007, Berlin Germany 9273, European Association of Agricultural Economists.
    17. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    18. Stephen Schneider & William Easterling & Linda Mearns, 2000. "Adaptation: Sensitivity to Natural Variability, Agent Assumptions and Dynamic Climate Changes," Climatic Change, Springer, vol. 45(1), pages 203-221, April.
    19. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    20. Ludwig, Fulco & Asseng, Senthold, 2010. "Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates," Agricultural Systems, Elsevier, vol. 103(3), pages 127-136, March.
    21. Shibly Shahrier & Koji Kotani & Yoshinori Nakagawa, 2021. "Cooperation on climate change and ongoing urbanization," Working Papers SDES-2021-8, Kochi University of Technology, School of Economics and Management, revised Sep 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6721:d:10.1038_17789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.