IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i11d10.1038_s41893-023-01189-3.html
   My bibliography  Save this article

Quantifying timber illegality risk in the Brazilian forest frontier

Author

Listed:
  • Caroline S. S. Franca

    (Chalmers University of Technology)

  • U. Martin Persson

    (Chalmers University of Technology)

  • Tomás Carvalho

    (Stockholm Environment Institute (SEI))

  • Marco Lentini

    (Instituto de Manejo e Certificação Florestal e Agrícola (Imaflora))

Abstract

Illegal logging remains widespread across the tropics, leading to extensive forest degradation and trade in illegal timber products. By adapting environmentally extended input–output modelling to timber originating from Brazilian native forests, we demonstrate how distinct illegality risks can be mapped and quantified at species-level across the supply chain. We focus on high-value ipê hardwood from the Amazon state of Pará, a leading producer of timber and contested forest frontier. Data on logging permits and state- and national-level Document of Forest Origin licences are used to estimate illegality risks due to missing or invalid logging permits, overstated ipê yields or discrepancies resulting from missing inflows of legal timber. We find that less than a quarter of all ipê entering supply chains between 2009 and 2019 is risk-free and highlight diversified strategies for the laundering of illegal timber across geographies. While legality does not ensure sustainability, this information can be leveraged to this end by supporting improved implementation and enforcement of forest regulations.

Suggested Citation

  • Caroline S. S. Franca & U. Martin Persson & Tomás Carvalho & Marco Lentini, 2023. "Quantifying timber illegality risk in the Brazilian forest frontier," Nature Sustainability, Nature, vol. 6(11), pages 1485-1495, November.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:11:d:10.1038_s41893-023-01189-3
    DOI: 10.1038/s41893-023-01189-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-023-01189-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-023-01189-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuanwei Qin & Xiangming Xiao & Jean-Pierre Wigneron & Philippe Ciais & Martin Brandt & Lei Fan & Xiaojun Li & Sean Crowell & Xiaocui Wu & Russell Doughty & Yao Zhang & Fang Liu & Stephen Sitch & Berri, 2021. "Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon," Nature Climate Change, Nature, vol. 11(5), pages 442-448, May.
    2. Hansen, Christian P. & Rutt, Rebecca & Acheampong, Emmanuel, 2018. "‘Experimental’ or business as usual? Implementing the European Union Forest Law Enforcement, Governance and Trade (FLEGT) Voluntary Partnership Agreement in Ghana," Forest Policy and Economics, Elsevier, vol. 96(C), pages 75-82.
    3. H. S. Grantham & A. Duncan & T. D. Evans & K. R. Jones & H. L. Beyer & R. Schuster & J. Walston & J. C. Ray & J. G. Robinson & M. Callow & T. Clements & H. M. Costa & A. DeGemmis & P. R. Elsen & J. Er, 2020. "Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    5. Carolina Milhorance, 2022. "Policy dismantling and democratic regression in Brazil under Bolsonaro: Coalition politics, ideas, and underlying discourses," Review of Policy Research, Policy Studies Organization, vol. 39(6), pages 752-770, November.
    6. Jos Barlow & Gareth D. Lennox & Joice Ferreira & Erika Berenguer & Alexander C. Lees & Ralph Mac Nally & James R. Thomson & Silvio Frosini de Barros Ferraz & Julio Louzada & Victor Hugo Fonseca Olivei, 2016. "Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation," Nature, Nature, vol. 535(7610), pages 144-147, July.
    7. Elizângela Silva Luz & Álvaro Augusto Vieira Soares & Selma Lopes Goulart & Amélia Guimarães Carvalho & Thiago Campos Monteiro & Thiago Paula Protásio, 2021. "Challenges of the lumber production in the Amazon region: relation between sustainability of sawmills, process yield and logs quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4924-4948, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Ma & Jiawei Li & Wanben Wu & Jiajia Liu, 2023. "Global forest fragmentation change from 2000 to 2020," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    3. Bruckner, Martin & Giljum, Stefan & Fischer, Günther & Tramberend, Sylvia & Börner, Jan, 2018. "The global cropland footprint of the non-food bioeconomy," Discussion Papers 271062, University of Bonn, Center for Development Research (ZEF).
    4. Samuel Xin Tham Lee & Zachary Amir & Jonathan H. Moore & Kaitlyn M. Gaynor & Matthew Scott Luskin, 2024. "Effects of human disturbances on wildlife behaviour and consequences for predator-prey overlap in Southeast Asia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    6. Sirakov, Nikolay & Fontez, Bénédicte & Libourel, Thérèse & dos Santos, Alessio & Mitja, Danielle & Loisel, Patrice, 2019. "A stage-structured hierarchical Bayes model for the babassu palm tree population dynamics – Estimated from anthropogenic open area data sets," Ecological Modelling, Elsevier, vol. 400(C), pages 14-26.
    7. Florian Reiner & Martin Brandt & Xiaoye Tong & David Skole & Ankit Kariryaa & Philippe Ciais & Andrew Davies & Pierre Hiernaux & Jérôme Chave & Maurice Mugabowindekwe & Christian Igel & Stefan Oehmcke, 2023. "More than one quarter of Africa’s tree cover is found outside areas previously classified as forest," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Matheus Henrique Nunes & Marcel Caritá Vaz & José Luís Campana Camargo & William F. Laurance & Ana Andrade & Alberto Vicentini & Susan Laurance & Pasi Raumonen & Toby Jackson & Gabriela Zuquim & Jin W, 2023. "Edge effects on tree architecture exacerbate biomass loss of fragmented Amazonian forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Fabio Sporchia & Nicoletta Patrizi & Federico Maria Pulselli, 2023. "Date Fruit Production and Consumption: A Perspective on Global Trends and Drivers from a Multidimensional Footprint Assessment," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    10. Panzone, Luca A. & Wossink, Ada & Southerton, Dale, 2013. "The design of an environmental index of sustainable food consumption: A pilot study using supermarket data," Ecological Economics, Elsevier, vol. 94(C), pages 44-55.
    11. Isabel L. Jones & Joseph W. Bull, 2020. "Major dams and the challenge of achieving “No Net Loss” of biodiversity in the tropics," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(2), pages 435-443, March.
    12. Chalkiadakis, Charis & Drakou, Evangelia G. & Kraak, Menno-Jan, 2022. "Ecosystem service flows: A systematic literature review of marine systems," Ecosystem Services, Elsevier, vol. 54(C).
    13. Nils C. Bandelow & Johanna Hornung, 2022. "Narratives, evidence and public policy in crisis situations," Review of Policy Research, Policy Studies Organization, vol. 39(6), pages 704-707, November.
    14. Hao, Yan & Zhang, Menghui & Zhang, Yan & Fu, Chenling & Lu, Zhongming, 2018. "Multi-scale analysis of the energy metabolic processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 369(C), pages 66-76.
    15. Hoffmann, Farina & Koellner, Thomas & Kastner, Thomas, 2021. "The micronutrient content of the European Union's agricultural trade," Ecological Economics, Elsevier, vol. 188(C).
    16. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    17. Jonathan Zeitlin & Christine Overdevest, 2021. "Experimentalist interactions: Joining up the transnational timber legality regime," Regulation & Governance, John Wiley & Sons, vol. 15(3), pages 686-708, July.
    18. Verhaeghe, Elke, 2021. "The (post)politicisation of timber trade: (Un)invited participation in the EU-Vietnam Voluntary Partnership Agreement," Forest Policy and Economics, Elsevier, vol. 129(C).
    19. Georg Smolka & Ervin Kosatica & Markus Berger & Meidad Kissinger & Dor Fridman & Thomas Koellner, 2023. "Domestic water versus imported virtual blue water for agricultural production: A comparison based on energy consumption and related greenhouse gas emissions," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1123-1136, August.
    20. Adrian Foong & Prajal Pradhan & Oliver Frör & Jürgen P. Kropp, 2022. "Adjusting agricultural emissions for trade matters for climate change mitigation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:11:d:10.1038_s41893-023-01189-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.