IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61854-3.html
   My bibliography  Save this article

Electrochromic smart windows with co-intercalation of cations and anions for multi-band regulations

Author

Listed:
  • Jiawei Sun

    (University of Shanghai for Science and Technology
    Southern University of Science and Technology)

  • Zhe Chen

    (University of Shanghai for Science and Technology)

  • Renfu Zhang

    (Southern University of Science and Technology)

  • Menghan Yin

    (Southern University of Science and Technology)

  • Ying Zhu

    (Southern University of Science and Technology)

  • Jiacheng Hu

    (Southern University of Science and Technology)

  • Qinqi Zhou

    (Southern University of Science and Technology)

  • Peipei Shao

    (Southern University of Science and Technology)

  • Qingjiao Huang

    (Southern University of Science and Technology)

  • Dongyun Ma

    (University of Shanghai for Science and Technology)

  • Rui-Tao Wen

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Jinmin Wang

    (University of Shanghai for Science and Technology)

Abstract

Electrochromic technology has been considered as an energy-efficient approach to reduce the energy consumption in buildings and vehicles. Studies of electrochromic devices (ECDs) have so far focused mainly on control of cations (for example, H+, Li+, Na+, K+, and Zn2+, etc), while anions were rarely considered. Here, X-ray photoelectron spectroscopy (XPS) provides direct evidence that the transformation of Prussian blue (PB) to Prussian green (PG) occurs due to an anion intercalation process, in addition to the cation intercalation-induced switching between PB and Prussian white (PW). Co-intercalation of cations and anions is found in an ECD combining Nb18W16O93 and PB as complementary electrochromic layers: cations (for example, K+) insertion into Nb18W16O93 leads to its colored state and anions (for example, Cl−) insertion into PB forms PG. Benefiting from the co-intercalation of both cations and anions, the Nb18W16O93/PB based ECD can achieve diverse color and spectral modulations while maintaining excellent performance retention, thanks to the charge balance design. The concept of co-intercalation of cations and anions in an ECD provides a new approach to the development of next-generation high-performance ECDs.

Suggested Citation

  • Jiawei Sun & Zhe Chen & Renfu Zhang & Menghan Yin & Ying Zhu & Jiacheng Hu & Qinqi Zhou & Peipei Shao & Qingjiao Huang & Dongyun Ma & Rui-Tao Wen & Jinmin Wang, 2025. "Electrochromic smart windows with co-intercalation of cations and anions for multi-band regulations," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61854-3
    DOI: 10.1038/s41467-025-61854-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61854-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61854-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinmin Wang & Lei Zhang & Le Yu & Zhihui Jiao & Huaqing Xie & Xiong Wen (David) Lou & Xiao Wei Sun, 2014. "A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    2. Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
    3. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    4. Renfu Zhang & Qinqi Zhou & Siyuan Huang & Yiwen Zhang & Rui-Tao Wen, 2024. "Capturing ion trapping and detrapping dynamics in electrochromic thin films," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    6. Kerui Li & Yuanlong Shao & Hongping Yan & Zhi Lu & Kent J. Griffith & Jinhui Yan & Gang Wang & Hongwei Fan & Jingyu Lu & Wei Huang & Bin Bao & Xuelong Liu & Chengyi Hou & Qinghong Zhang & Yaogang Li &, 2018. "Lattice-contraction triggered synchronous electrochromic actuator," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    7. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varghese, Sushant & Sioshansi, Ramteen, 2020. "The price is right? How pricing and incentive mechanisms in California incentivize building distributed hybrid solar and energy-storage systems," Energy Policy, Elsevier, vol. 138(C).
    2. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    3. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    4. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    5. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    6. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    8. Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
    9. Ivan Bevanda & Petar Marić & Ante Kristić & Tihomir Betti, 2025. "Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates," Energies, MDPI, vol. 18(14), pages 1-24, July.
    10. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    11. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    12. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    13. Hossein Lotfi & Mohammad Hasan Nikkhah, 2024. "Multi-Objective Profit-Based Unit Commitment with Renewable Energy and Energy Storage Units Using a Modified Optimization Method," Sustainability, MDPI, vol. 16(4), pages 1-28, February.
    14. Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
    15. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    16. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    17. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    18. Rathore, Abhijeet & Gupta, Priya & Sharma, Raksha & Singh, Rhythm, 2025. "Day ahead solar forecast using long short term memory network augmented with Fast Fourier transform-assisted decomposition technique," Renewable Energy, Elsevier, vol. 247(C).
    19. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    20. Hossam M. Hussein & Ahmed Aghmadi & Mahmoud S. Abdelrahman & S M Sajjad Hossain Rafin & Osama Mohammed, 2024. "A review of battery state of charge estimation and management systems: Models and future prospective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61854-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.