IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61845-4.html
   My bibliography  Save this article

An all-inorganic three-dimensional polyoxoniobate framework with ppb-level chemiresistive sensing for ammonia

Author

Listed:
  • Zheng-Wei Guo

    (Fuzhou University)

  • Yan-Huang Yan

    (Fuzhou University)

  • Yi Chen

    (Fuzhou University)

  • Yi-Ying Li

    (Fuzhou University)

  • Xin-Xiong Li

    (Fuzhou University)

  • Cai Sun

    (Fuzhou University
    Fuzhou University)

  • Shou-Tian Zheng

    (Fuzhou University
    Fuzhou University)

Abstract

Fabrication of gas sensors with high sensibility appears particularly important due to the urgent demand for toxic gases monitoring in public safety and atmosphere detection, especially for the detection requirement of ultra-low concentration gases. Here, we present a rare three-dimensional (3D) all-inorganic polyoxoniobate (PONb) framework based on {Cu4@Nb29} secondary building units linked with both tetranuclear {Cu4(OH)5} clusters and mononuclear [Cu(H2O)]2+ units. Remarkably, this 3D PONb framework exhibits an ultrasensitive response to NH3 with a lowest limit of detection of 1.64 ppt up to now. Furthermore, the NH3 induced single-crystal-to-single-crystal transformation as well as density functional theory analysis reveal that the strong coordination affinity of [Cu(H2O)]2+ linker for NH3, along with more injection of charge into the framework, results in a ultrasensitivity chemiresistive responses to NH3, at atomic-level insight.

Suggested Citation

  • Zheng-Wei Guo & Yan-Huang Yan & Yi Chen & Yi-Ying Li & Xin-Xiong Li & Cai Sun & Shou-Tian Zheng, 2025. "An all-inorganic three-dimensional polyoxoniobate framework with ppb-level chemiresistive sensing for ammonia," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61845-4
    DOI: 10.1038/s41467-025-61845-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61845-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61845-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi-Xin Liu & Ping-Xin Wu & Jing-Yi Dai & Ping-Wei Cai & Cai Sun & Shou-Tian Zheng, 2024. "Site differentiation strategy for selective strontium uptake and elution within an all-inorganic polyoxoniobate framework," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Hong Zhang & Zuobin Zhang & Zhou Li & Hongjie Han & Weiguo Song & Jianxin Yi, 2023. "A chemiresistive-potentiometric multivariate sensor for discriminative gas detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    4. Alastair Lewis & Peter Edwards, 2016. "Validate personal air-pollution sensors," Nature, Nature, vol. 535(7610), pages 29-31, July.
    5. Caihong Zhan & Jamie M. Cameron & David Gabb & Thomas Boyd & Ross S. Winter & Laia Vilà-Nadal & Scott G. Mitchell & Stefan Glatzel & Joachim Breternitz & Duncan H. Gregory & De-Liang Long & Andrew Mac, 2017. "A metamorphic inorganic framework that can be switched between eight single-crystalline states," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    2. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    3. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    4. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    5. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    6. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    7. Agnieszka Sobolewska & Marcin Bukowski, 2025. "Consumption of Nitrogen Fertilizers in the EU—External Costs of Their Production by Country of Application," Agriculture, MDPI, vol. 15(3), pages 1-18, January.
    8. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Wang, Zhihui, 2024. "Determining effect of fertilization on reactive nitrogen losses through nitrate leaching and key influencing factors in Chinese agricultural systems," Agricultural Water Management, Elsevier, vol. 303(C).
    9. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    10. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    11. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.
    12. repec:ags:aolpei:338005 is not listed on IDEAS
    13. Xinbing Wang & Yuxin Miao & Rui Dong & Zhichao Chen & Yanjie Guan & Xuezhi Yue & Zheng Fang & David J. Mulla, 2019. "Developing Active Canopy Sensor-Based Precision Nitrogen Management Strategies for Maize in Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    14. Cortez-Arriola, José & Groot, Jeroen C.J. & Rossing, Walter A.H. & Scholberg, Johannes M.S. & Améndola Massiotti, Ricardo D. & Tittonell, Pablo, 2016. "Alternative options for sustainable intensification of smallholder dairy farms in North-West Michoacán, Mexico," Agricultural Systems, Elsevier, vol. 144(C), pages 22-32.
    15. Adnan Shakeel & Abrar Ahmad Khan & Hesham F. Alharby & Atif A. Bamagoos & Nadiyah M. Alabdallah & Khalid Rehman Hakeem, 2021. "Optimizing Nitrogen Application in Root Vegetables from Their Growth, Biochemical and Antioxidant Response to Urea Fertilizer," Agriculture, MDPI, vol. 11(8), pages 1-16, July.
    16. Ke-Feng Li & Chen-Hui Yu & Guang-Ling Liang & Jie Chen & Yu Chang & Gang Xu & Guan-E Wang, 2025. "Organic-inorganic hybrid covalent superlattice for temperature-compensated ratiometric gas sensing," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Kristin Linnerud & Erling Holden & Morten Simonsen, 2021. "Closing the sustainable development gap: A global study of goal interactions," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 738-753, July.
    18. Yihan Chen & Wen Xiang & Minjuan Zhao, 2024. "Impacts of Capital Endowment on Farmers’ Choices in Fertilizer-Reduction and Efficiency-Increasing Technologies (Preferences, Influences, and Mechanisms): A Case Study of Apple Farmers in the Province," Agriculture, MDPI, vol. 14(1), pages 1-25, January.
    19. Rudi Hessel & Guido Wyseure & Ioanna S. Panagea & Abdallah Alaoui & Mark S. Reed & Hedwig van Delden & Melanie Muro & Jane Mills & Oene Oenema & Francisco Areal & Erik van den Elsen & Simone Verzandvo, 2022. "Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe," Land, MDPI, vol. 11(6), pages 1-27, May.
    20. Carmine Massarelli & Daniela Losacco & Marina Tumolo & Claudia Campanale & Vito Felice Uricchio, 2021. "Protection of Water Resources from Agriculture Pollution: An Integrated Methodological Approach for the Nitrates Directive 91–676-EEC Implementation," IJERPH, MDPI, vol. 18(24), pages 1-26, December.
    21. Mohammed, Sadick & Abdulai, Awudu, 2021. "Extension Participation and Improved Technology Adoption: Impact on Efficiency and Welfare of Farmers in Ghana," 2021 Conference, August 17-31, 2021, Virtual 315362, International Association of Agricultural Economists.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61845-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.