IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60104-w.html
   My bibliography  Save this article

Evidence for preferred propagating terrestrial heatwave pathways due to Rossby wave activity

Author

Listed:
  • Mingzhao Wang

    (Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University
    School of Engineering and Design, Technical University of Munich)

  • Yu Huang

    (School of Engineering and Design, Technical University of Munich
    Potsdam Institute for Climate Impact Research)

  • Christian L. E. Franzke

    (Institute for Basic Science
    Pusan National University)

  • Naiming Yuan

    (Sun Yat-sen University
    Ministry of Education
    Southern Marine Science and Engineering Guangdong Laboratory)

  • Zuntao Fu

    (Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University)

  • Niklas Boers

    (School of Engineering and Design, Technical University of Munich
    Potsdam Institute for Climate Impact Research)

Abstract

Terrestrial heatwaves are prolonged hot weather events often resulting in widespread socioeconomic impacts. Predicting heatwaves remains challenging, partly due to limited understanding of the events’ spatial evolution and underlying mechanisms. Heatwaves were mainly examined at fixed stations, with little attention given to the fact that the center of a heatwave can move a long distance. Here, we examine the spatial propagation of terrestrial heatwaves using a complex network algorithm, and find four preferred propagation pathways of terrestrial heatwaves in the northern hemisphere. Along each preferred pathway, heatwaves evolve in two ways: propagating along the pathway or being stationary. We show that the propagating heatwave pathways are consistent with the movement of Rossby wave trains, and that both are guided by enhanced Rossby wave flux activities. The detected propagation pathways are found to provide prior knowledge for occurrences of downstream heatwaves that can be used for identifying associated precursor signals. The results shed light on the mechanisms responsible for preferred propagating heatwave pathways and provide potential predictability of terrestrial heatwaves.

Suggested Citation

  • Mingzhao Wang & Yu Huang & Christian L. E. Franzke & Naiming Yuan & Zuntao Fu & Niklas Boers, 2025. "Evidence for preferred propagating terrestrial heatwave pathways due to Rossby wave activity," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60104-w
    DOI: 10.1038/s41467-025-60104-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60104-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60104-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ilan Price & Alvaro Sanchez-Gonzalez & Ferran Alet & Tom R. Andersson & Andrew El-Kadi & Dominic Masters & Timo Ewalds & Jacklynn Stott & Shakir Mohamed & Peter Battaglia & Remi Lam & Matthew Willson, 2025. "Probabilistic weather forecasting with machine learning," Nature, Nature, vol. 637(8044), pages 84-90, January.
    2. David Keellings & Erin Bunting & Johanna Engström, 2018. "Spatiotemporal changes in the size and shape of heat waves over North America," Climatic Change, Springer, vol. 147(1), pages 165-178, March.
    3. Rowan Sutton, 2018. "Attributing extreme weather to climate change is not a done deal," Nature, Nature, vol. 561(7722), pages 177-177, September.
    4. S. E. Perkins-Kirkpatrick & S. C. Lewis, 2020. "Increasing trends in regional heatwaves," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Karen Smoyer-Tomic & Robyn Kuhn & Alana Hudson, 2003. "Heat Wave Hazards: An Overview of Heat Wave Impacts in Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 465-486, March.
    6. Niklas Boers & Bedartha Goswami & Aljoscha Rheinwalt & Bodo Bookhagen & Brian Hoskins & Jürgen Kurths, 2019. "Complex networks reveal global pattern of extreme-rainfall teleconnections," Nature, Nature, vol. 566(7744), pages 373-377, February.
    7. Kai Kornhuber & Corey Lesk & Carl F. Schleussner & Jonas Jägermeyr & Peter Pfleiderer & Radley M. Horton, 2023. "Risks of synchronized low yields are underestimated in climate and crop model projections," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
    4. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    5. Arellano-Gonzalez, Jesus & Juarez-Torres, Miriam & Zazueta-Borboa, Francisco, 2021. "Temperature shocks and local price changes of agricultural products: panel data evidence from Mexico," 2021 Annual Meeting, August 1-3, Austin, Texas 314060, Agricultural and Applied Economics Association.
    6. Konstantinos Spiliotis & Konstantinos Voudouris & Harris Vangelis & Mike Spiliotis, 2025. "Analysis of Annual Drought Episodes Using Complex Networks," Sustainability, MDPI, vol. 17(4), pages 1-17, February.
    7. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    8. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    11. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Haqiqi, Iman & Buzan, Jonathan & Zanetti De Lima, Cicero & Hertel, Thomas, 2020. "Margins of Adaptation to Human Heat Stress: Local, National, and Global Socioeconomic Responses," Conference papers 333237, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Nico Wunderling & Frederik Wolf & Obbe A. Tuinenburg & Arie Staal, 2022. "Network motifs shape distinct functioning of Earth’s moisture recycling hubs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Simin Deng & Xuezhi Tan & Bingjun Liu, 2025. "Impacts of changes in climate extremes on maize yields over Mainland China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 17(1), pages 185-205, February.
    15. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    16. Gege Nie & Jun Yang & Yuqing Zhang & Xiangming Xiao & Jianhong (Cecilia) Xia & Xiaoyu Cai & Chunli Li, 2024. "Duration of exposure to compound daytime-nighttime high temperatures and changes in population exposure in China under global warming," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    17. Michael J. Allen & Daniel J. Vecellio & Jeremy S. Hoffman, 2025. "Evaluating the relationship between heat-related illness and cooling center location in Virginia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4293-4308, March.
    18. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review," Agricultural Water Management, Elsevier, vol. 179(C), pages 18-33.
    19. Xin-Feng Wei & Wei Yang & Mikael S. Hedenqvist, 2024. "Plastic pollution amplified by a warming climate," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    20. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60104-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.