IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57525-y.html
   My bibliography  Save this article

Dynamics and drivers of tidal flat morphology in China

Author

Listed:
  • Shuai Liu

    (Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

  • Zhan Hu

    (Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
    Sun Yat-sen University
    Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering
    Ministry of Education)

  • Tim J. Grandjean

    (Royal Netherlands Institute for Sea Research (NIOZ)
    Utrecht University)

  • Zheng Bing Wang

    (Delft University of Technology
    Deltares)

  • Vincent T. M. Zelst

    (Delft University of Technology
    Deltares)

  • Lin Qi

    (NOAA Center for Satellite Applications and Research)

  • Tianping Xu

    (Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

  • Jun Young Seo

    (Chonnam National University)

  • Tjeerd J. Bouma

    (Royal Netherlands Institute for Sea Research (NIOZ)
    Utrecht University)

Abstract

Recent remote sensing analysis has revealed extensive loss of tidal flats, yet the mechanisms driving these large-scale changes remain unclear. Here we show the spatiotemporal variations of 2,538 tidal flat transects across China to elucidate how their morphological features vary with external factors, including suspended sediment concentration (SSC), tidal range, and wave height. We observe a correlation between flat width and SSC distribution, and between flat slope and tidal range. A nation-wide decline in flat width is observed together with SSC reduction between 2002 and 2016. Intriguingly, sediment-rich flats exhibit more rapid width losses if SSC reduces, but slower width gain if SSC increase compared to sediment-starved flats. These dynamics resemble stretched (sediment-rich) or compressed (sediment-starved) springs that tend to return to equilibrium, which can be explained by synthetic morphodynamic modeling. Similar patterns can be observed from Indonesia, the United States, and Australia, implying that the impact of sediment supply change is wide-spread and large-scale sediment allocation plan based on equilibrium concept can help preserving intertidal ecosystems.

Suggested Citation

  • Shuai Liu & Zhan Hu & Tim J. Grandjean & Zheng Bing Wang & Vincent T. M. Zelst & Lin Qi & Tianping Xu & Jun Young Seo & Tjeerd J. Bouma, 2025. "Dynamics and drivers of tidal flat morphology in China," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57525-y
    DOI: 10.1038/s41467-025-57525-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57525-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57525-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew L. Kirwan & Stijn Temmerman & Emily E. Skeehan & Glenn R. Guntenspergen & Sergio Fagherazzi, 2016. "Overestimation of marsh vulnerability to sea level rise," Nature Climate Change, Nature, vol. 6(3), pages 253-260, March.
    2. Krista L. Jankowski & Torbjörn E Törnqvist & Anjali M Fernandes, 2017. "Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Mark Schuerch & Tom Spencer & Stijn Temmerman & Matthew L. Kirwan & Claudia Wolff & Daniel Lincke & Chris J. McOwen & Mark D. Pickering & Ruth Reef & Athanasios T. Vafeidis & Jochen Hinkel & Robert J., 2018. "Future response of global coastal wetlands to sea-level rise," Nature, Nature, vol. 561(7722), pages 231-234, September.
    4. Neil K. Ganju & Zafer Defne & Matthew L. Kirwan & Sergio Fagherazzi & Andrea D’Alpaos & Luca Carniello, 2017. "Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    5. Nicholas J. Murray & Stuart R. Phinn & Michael DeWitt & Renata Ferrari & Renee Johnston & Mitchell B. Lyons & Nicholas Clinton & David Thau & Richard A. Fuller, 2019. "The global distribution and trajectory of tidal flats," Nature, Nature, vol. 565(7738), pages 222-225, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonard O. Ohenhen & Manoochehr Shirzaei & Chandrakanta Ojha & Matthew L. Kirwan, 2023. "Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Guandong Li & Torbjörn E. Törnqvist & Sönke Dangendorf, 2024. "Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Kevin C. Hanegan & Duncan M. FitzGerald & Ioannis Y. Georgiou & Zoe J. Hughes, 2023. "Long-term sea level rise modeling of a basin-tidal inlet system reveals sediment sinks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Xuejiao Hou & Danghan Xie & Lian Feng & Fang Shen & Jaap H. Nienhuis, 2024. "Sustained increase in suspended sediments near global river deltas over the past two decades," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Vincent T. M. Zelst & Jasper T. Dijkstra & Bregje K. Wesenbeeck & Dirk Eilander & Edward P. Morris & Hessel C. Winsemius & Philip J. Ward & Mindert B. Vries, 2021. "Cutting the costs of coastal protection by integrating vegetation in flood defences," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Sèna Donalde Dolorès Marguerite Deguenon & Castro Gbêmêmali Hounmenou & Richard Adade & Oscar Teka & Ismaila Imorou Toko & Denis Worlanyo Aheto & Brice Sinsin, 2023. "Simulation of the Impacts of Sea-Level Rise on Coastal Ecosystems in Benin Using a Combined Approach of Machine Learning and the Sea Level Affecting Marshes Model," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    7. Tracy Elsey-Quirk & Austin Lynn & Michael Derek Jacobs & Rodrigo Diaz & James T. Cronin & Lixia Wang & Haosheng Huang & Dubravko Justic, 2024. "Vegetation dieback in the Mississippi River Delta triggered by acute drought and chronic relative sea-level rise," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Kendall Valentine & Ellen R. Herbert & David C. Walters & Yaping Chen & Alexander J. Smith & Matthew L. Kirwan, 2023. "Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Minjing Wang & Yanyan Kang & Zhuyou Sun & Jun Lei & Xiuqiang Peng, 2022. "Monitoring Wetland Landscape Evolution Using Landsat Time-Series Data: A Case Study of the Nantong Coast, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    10. Yuan Xu & Christopher R. Esposito & Maricel Beltrán-Burgos & Heidi M. Nepf, 2022. "Competing effects of vegetation density on sedimentation in deltaic marshes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Gregory S. Fivash & Stijn Temmerman & Maarten G. Kleinhans & Maike Heuner & Tjisse Heide & Tjeerd J. Bouma, 2023. "Early indicators of tidal ecosystem shifts in estuaries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    13. Chao Xu & Weibo Liu, 2021. "The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020," Geographies, MDPI, vol. 1(3), pages 1-23, November.
    14. repec:ags:aaea22:335970 is not listed on IDEAS
    15. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Jingfan Zhang & Zhe Lu & Jinge Zhou & Guoming Qin & Yicheng Bai & Christian J. Sanders & Peter I. Macreadie & Jiacan Yuan & Xingyun Huang & Faming Wang, 2025. "Getting the best of carbon bang for mangrove restoration buck," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    17. Xiao, Hui & Chadès, Iadine & Hill, Narelle & Murray, Nicholas & Fuller, Richard A. & McDonald-Madden, Eve, 2021. "Conserving migratory species while safeguarding ecosystem services," Ecological Modelling, Elsevier, vol. 442(C).
    18. Bowei Yu & Chunsheng Wu & Zhonghe Zhao, 2025. "Impacts of Water and Sediment Fluxes into the Sea on Spatiotemporal Evolution of Coastal Zone in the Yellow River Delta," Land, MDPI, vol. 14(4), pages 1-18, April.
    19. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Yanhui Chen & Guosheng Li & Linlin Cui & Lijuan Li & Lei He & Peipei Ma, 2022. "The Effects of Tidal Flat Reclamation on the Stability of the Coastal Area in the Jiangsu Province, China, from the Perspective of Landscape Structure," Land, MDPI, vol. 11(3), pages 1-20, March.
    21. Zafer Defne & Alfredo L Aretxabaleta & Neil K Ganju & Tarandeep S Kalra & Daniel K Jones & Kathryn E L Smith, 2020. "A geospatially resolved wetland vulnerability index: Synthesis of physical drivers," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-27, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57525-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.