IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p16001-d1281387.html
   My bibliography  Save this article

Simulation of the Impacts of Sea-Level Rise on Coastal Ecosystems in Benin Using a Combined Approach of Machine Learning and the Sea Level Affecting Marshes Model

Author

Listed:
  • Sèna Donalde Dolorès Marguerite Deguenon

    (Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, Calavi BP 526, Benin
    Centre for Coastal Management, University of Cape Coast, Cape Coast PMB TF0494, Ghana)

  • Castro Gbêmêmali Hounmenou

    (Laboratoire de Biomatématiques et d’Estimations Forestières (LABEF), Faculty of Agronomic Sciences, University of Abomey-Calavi, Calavi BP 1525, Benin)

  • Richard Adade

    (Africa Centre of Excellence in Coastal Resilience—Centre for Coastal Management, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast PMB TF0494, Ghana)

  • Oscar Teka

    (Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, Calavi BP 526, Benin)

  • Ismaila Imorou Toko

    (Laboratoire de Cartographie (LaCarto), Institut de Géographie, de l’Aménagement du Territoire et de l’Environnement (IGATE), University of Abomey-Calavi, Calavi BP 698, Benin)

  • Denis Worlanyo Aheto

    (Africa Centre of Excellence in Coastal Resilience—Centre for Coastal Management, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast PMB TF0494, Ghana)

  • Brice Sinsin

    (Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, Calavi BP 526, Benin)

Abstract

Sea-level rise in Benin coastal zones leads to risks of erosion and flooding, which have significant consequences on the socio-economic life of the local population. In this paper, erosion, flood risk, and greenhouse gas sequestration resulting from sea-level rise in the coastal zone of the Benin coast were assessed with the Sea Level Affecting Marshes Model (SLAMM) using ArcGIS Pro 3.1 tools. The input features used were the Digital Elevation Map (DEM), the National Wetland Inventory (NWI) categories, and the slope of each cell. National Wetland Inventory (NWI) categories were then created using Support Vector Machines (SVMs), a supervised machine learning technique. The research simulated the effects of a 1.468 m sea-level rise in the study area from 2021 to 2090, considering wetland types, marsh accretion, wave erosion, and surface elevation changes. The largest land cover increases were observed in Estuarine Open Water and Open Ocean, expanding by approximately 106.2 hectares across different sea-level rise scenarios (RCP 8.5_Upper Limit). These gains were counterbalanced by losses of approximately 106.2 hectares in Inland Open Water, Ocean Beaches, Mangroves, Regularly Flooded Marsh, Swamp, Undeveloped, and Developed Dryland. Notably, Estuarine Open Water (97.7 hectares) and Open Ocean (8.5 hectares) experienced the most significant expansion, indicating submergence and saltwater intrusion by 2090 due to sea-level rise. The largest reductions occurred in less tidally influenced categories like Inland Open Water (−81.4 hectares), Ocean Beach (−7.9 hectares), Swamp (−5.1 hectares), Regularly Flooded Marsh (−4.6 hectares), and Undeveloped Dryland (−2.9 hectares). As the sea-level rises by 1.468 m, these categories are expected to be notably diminished, with Estuarine Open Water and Open Ocean becoming dominant. Erosion and flooding in the coastal zone are projected to have severe adverse impacts, including a gradual decline in greenhouse gas sequestration capacity. The outputs of this research will aid coastal management organizations in evaluating the consequences of sea-level rise and identifying areas with high mitigation requirements.

Suggested Citation

  • Sèna Donalde Dolorès Marguerite Deguenon & Castro Gbêmêmali Hounmenou & Richard Adade & Oscar Teka & Ismaila Imorou Toko & Denis Worlanyo Aheto & Brice Sinsin, 2023. "Simulation of the Impacts of Sea-Level Rise on Coastal Ecosystems in Benin Using a Combined Approach of Machine Learning and the Sea Level Affecting Marshes Model," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16001-:d:1281387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/16001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/16001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew L. Kirwan & Stijn Temmerman & Emily E. Skeehan & Glenn R. Guntenspergen & Sergio Fagherazzi, 2016. "Overestimation of marsh vulnerability to sea level rise," Nature Climate Change, Nature, vol. 6(3), pages 253-260, March.
    2. Mark Schuerch & Tom Spencer & Stijn Temmerman & Matthew L. Kirwan & Claudia Wolff & Daniel Lincke & Chris J. McOwen & Mark D. Pickering & Ruth Reef & Athanasios T. Vafeidis & Jochen Hinkel & Robert J., 2018. "Future response of global coastal wetlands to sea-level rise," Nature, Nature, vol. 561(7722), pages 231-234, September.
    3. Lelia Croitoru & Juan José Miranda & Maria Sarraf, 2019. "The Cost of Coastal Zone Degradation in West Africa," World Bank Publications - Reports 31428, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guandong Li & Torbjörn E. Törnqvist & Sönke Dangendorf, 2024. "Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Kevin C. Hanegan & Duncan M. FitzGerald & Ioannis Y. Georgiou & Zoe J. Hughes, 2023. "Long-term sea level rise modeling of a basin-tidal inlet system reveals sediment sinks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Xuejiao Hou & Danghan Xie & Lian Feng & Fang Shen & Jaap H. Nienhuis, 2024. "Sustained increase in suspended sediments near global river deltas over the past two decades," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Vincent T. M. Zelst & Jasper T. Dijkstra & Bregje K. Wesenbeeck & Dirk Eilander & Edward P. Morris & Hessel C. Winsemius & Philip J. Ward & Mindert B. Vries, 2021. "Cutting the costs of coastal protection by integrating vegetation in flood defences," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Leonard O. Ohenhen & Manoochehr Shirzaei & Chandrakanta Ojha & Matthew L. Kirwan, 2023. "Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Epanchin-Niell, Rebecca S. & Thompson, Alexandra & Han, Xianru & Post, Jessica & Miller, Jarrod & Newburn, David & Gedan, Keryn & Tully, Kate, 2023. "Coastal agricultural land use response to sea level rise and saltwater intrusion," 2023 Annual Meeting, July 23-25, Washington D.C. 335970, Agricultural and Applied Economics Association.
    7. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    9. Hagger, Valerie & Waltham, Nathan J. & Lovelock, Catherine E., 2022. "Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality," Ecosystem Services, Elsevier, vol. 55(C).
    10. Vinent, Orencio Duran & Johnston, Robert J. & Kirwan, Matthew L. & Leroux, Anke D. & Martin, Vance L., 2019. "Coastal dynamics and adaptation to uncertain sea level rise: Optimal portfolios for salt marsh migration," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    11. Kendall Valentine & Ellen R. Herbert & David C. Walters & Yaping Chen & Alexander J. Smith & Matthew L. Kirwan, 2023. "Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Xin Jing & Yuefei Zhuo & Zhongguo Xu & Yang Chen & Guan Li & Xueqi Wang, 2023. "Coastal Wetland Restoration Strategies Based on Ecosystem Service Changes: A Case Study of the South Bank of Hangzhou Bay," Land, MDPI, vol. 12(5), pages 1-20, May.
    13. Bukvic, A. & Mitchell, A. & Shao, Y. & Irish, J.L., 2023. "Spatiotemporal implications of flooding on relocation risk in rural and urban coastal municipalities," Land Use Policy, Elsevier, vol. 132(C).
    14. Suhaib A. Bandh & Fayaz A. Malla & Irteza Qayoom & Haika Mohi-Ud-Din & Aqsa Khursheed Butt & Aashia Altaf & Shahid A. Wani & Richard Betts & Thanh Hai Truong & Nguyen Dang Khoa Pham & Dao Nam Cao & Sh, 2023. "Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    15. Shasha Song & Isaac R. Santos & Huaming Yu & Faming Wang & William C. Burnett & Thomas S. Bianchi & Junyu Dong & Ergang Lian & Bin Zhao & Lawrence Mayer & Qingzhen Yao & Zhigang Yu & Bochao Xu, 2022. "A global assessment of the mixed layer in coastal sediments and implications for carbon storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Meixler, Marcia S. & Kaunzinger, Christina M.K. & Epiphan, Jean N. & Handel, Steven N., 2020. "Identifying opportunities for local assisted expansion of coastal upland vegetation in an urban estuary," Ecological Modelling, Elsevier, vol. 438(C).
    17. Fernanda Achete & Mick van der Wegen & Jan Adriaan Roelvink & Bruce Jaffe, 2017. "How can climate change and engineered water conveyance affect sediment dynamics in the San Francisco Bay-Delta system?," Climatic Change, Springer, vol. 142(3), pages 375-389, June.
    18. Debels-Lamblin Émilie & Jacolin Luc, 2020. "The impact of climate change in Sub Saharan Africa: vulnerabilities, resilience and finance [Impact du changement climatique sur l’Afrique subsaharienne : vulnérabilités, résilience et financements," Bulletin de la Banque de France, Banque de France, issue 230.
    19. Marc J. S. Hensel & Brian R. Silliman & Johan Koppel & Enie Hensel & Sean J. Sharp & Sinead M. Crotty & Jarrett E. K. Byrnes, 2021. "A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Yaoshen Fan & Shoubing Yu & Jinghao Wang & Peng Li & Shenliang Chen & Hongyu Ji & Ping Li & Shentang Dou, 2022. "Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation," Land, MDPI, vol. 11(10), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16001-:d:1281387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.