IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13718-d950711.html
   My bibliography  Save this article

Monitoring Wetland Landscape Evolution Using Landsat Time-Series Data: A Case Study of the Nantong Coast, China

Author

Listed:
  • Minjing Wang

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
    Observation and Research Station of East China Coastal Zone, Ministry of Natural Resources, Nanjing 210007, China
    Institute of Geochemical Exploration and Marine Geological Survey, East China Mineral Exploration and Development Bureau for Non-Ferrous Metals, Nanjing 210007, China)

  • Yanyan Kang

    (Observation and Research Station of East China Coastal Zone, Ministry of Natural Resources, Nanjing 210007, China
    College of Oceanography, Hohai University, Nanjing 210024, China)

  • Zhuyou Sun

    (Observation and Research Station of East China Coastal Zone, Ministry of Natural Resources, Nanjing 210007, China
    Institute of Geochemical Exploration and Marine Geological Survey, East China Mineral Exploration and Development Bureau for Non-Ferrous Metals, Nanjing 210007, China)

  • Jun Lei

    (Observation and Research Station of East China Coastal Zone, Ministry of Natural Resources, Nanjing 210007, China
    College of Oceanography, Hohai University, Nanjing 210024, China)

  • Xiuqiang Peng

    (Observation and Research Station of East China Coastal Zone, Ministry of Natural Resources, Nanjing 210007, China
    Institute of Geochemical Exploration and Marine Geological Survey, East China Mineral Exploration and Development Bureau for Non-Ferrous Metals, Nanjing 210007, China)

Abstract

Coastal wetlands not only have rich biodiversity and high productivity but also provide important ecological services. The monitoring of landscape changes can provide important support for the sustainable development of coastal zones. Landsat images from 1986 to 2017 were used to interpret the types of coastal wetlands in Nantong. A single dynamic degree and multiple landscape indices were calculated to analyze the rate of change and characteristics of each wetland type. The results demonstrate the following: (1) A Nantong wetland type system was established, which was divided into three major categories and eleven subcategories. (2) In general, natural wetlands, such as thatched and Suaeda salsa marshes, were extremely reduced, while artificial wetlands and non-wetlands with high human activity, such as breeding ponds, farmland, and construction land, increased significantly. (3) In the past 30 years, due to the influence of environmental pressures, such as population growth, land demand, and economic development, the major influencing factors of local landscape change have shifted from natural geographical factors to human activities and economic as well as social factors. Remote sensing wetland interpretation can be very helpful in monitoring the dynamic changes in coastal wetlands and can provide scientific support for the sustainable management of coastal zones.

Suggested Citation

  • Minjing Wang & Yanyan Kang & Zhuyou Sun & Jun Lei & Xiuqiang Peng, 2022. "Monitoring Wetland Landscape Evolution Using Landsat Time-Series Data: A Case Study of the Nantong Coast, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13718-:d:950711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew L. Kirwan & J. Patrick Megonigal, 2013. "Tidal wetland stability in the face of human impacts and sea-level rise," Nature, Nature, vol. 504(7478), pages 53-60, December.
    2. Nicholas J. Murray & Stuart R. Phinn & Michael DeWitt & Renata Ferrari & Renee Johnston & Mitchell B. Lyons & Nicholas Clinton & David Thau & Richard A. Fuller, 2019. "The global distribution and trajectory of tidal flats," Nature, Nature, vol. 565(7738), pages 222-225, January.
    3. Stijn Temmerman & Patrick Meire & Tjeerd J. Bouma & Peter M. J. Herman & Tom Ysebaert & Huib J. De Vriend, 2013. "Ecosystem-based coastal defence in the face of global change," Nature, Nature, vol. 504(7478), pages 79-83, December.
    4. Mark Schuerch & Tom Spencer & Stijn Temmerman & Matthew L. Kirwan & Claudia Wolff & Daniel Lincke & Chris J. McOwen & Mark D. Pickering & Ruth Reef & Athanasios T. Vafeidis & Jochen Hinkel & Robert J., 2018. "Future response of global coastal wetlands to sea-level rise," Nature, Nature, vol. 561(7722), pages 231-234, September.
    5. Amr E. Keshta & J. C. Alexis Riter & Kamal H. Shaltout & Andrew H. Baldwin & Michael Kearney & Ahmed Sharaf El-Din & Ebrahem M. Eid, 2022. "Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory S. Fivash & Stijn Temmerman & Maarten G. Kleinhans & Maike Heuner & Tjisse Heide & Tjeerd J. Bouma, 2023. "Early indicators of tidal ecosystem shifts in estuaries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Vincent T. M. Zelst & Jasper T. Dijkstra & Bregje K. Wesenbeeck & Dirk Eilander & Edward P. Morris & Hessel C. Winsemius & Philip J. Ward & Mindert B. Vries, 2021. "Cutting the costs of coastal protection by integrating vegetation in flood defences," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Epanchin-Niell, Rebecca S. & Thompson, Alexandra & Han, Xianru & Post, Jessica & Miller, Jarrod & Newburn, David & Gedan, Keryn & Tully, Kate, 2023. "Coastal agricultural land use response to sea level rise and saltwater intrusion," 2023 Annual Meeting, July 23-25, Washington D.C. 335970, Agricultural and Applied Economics Association.
    4. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    6. Yanhui Chen & Guosheng Li & Linlin Cui & Lijuan Li & Lei He & Peipei Ma, 2022. "The Effects of Tidal Flat Reclamation on the Stability of the Coastal Area in the Jiangsu Province, China, from the Perspective of Landscape Structure," Land, MDPI, vol. 11(3), pages 1-20, March.
    7. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    8. Eli D. Lazarus, 2017. "Toward a Global Classification of Coastal Anthromes," Land, MDPI, vol. 6(1), pages 1-27, February.
    9. Kaihang Zhou & Scott Hawken, 2023. "Climate-Related Sea Level Rise and Coastal Wastewater Treatment Infrastructure Futures: Landscape Planning Scenarios for Negotiating Risks and Opportunities in Australian Urban Areas," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
    10. Suhaib A. Bandh & Fayaz A. Malla & Irteza Qayoom & Haika Mohi-Ud-Din & Aqsa Khursheed Butt & Aashia Altaf & Shahid A. Wani & Richard Betts & Thanh Hai Truong & Nguyen Dang Khoa Pham & Dao Nam Cao & Sh, 2023. "Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    11. Shane Orchard & Kenneth F. D. Hughey & Richard Measures & David R. Schiel, 2020. "Coastal tectonics and habitat squeeze: response of a tidal lagoon to co-seismic sea-level change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3609-3631, September.
    12. Yifei Zhao & Qing Liu & Runqiu Huang & Haichen Pan & Min Xu, 2020. "Recent Evolution of Coastal Tidal Flats and the Impacts of Intensified Human Activities in the Modern Radial Sand Ridges, East China," IJERPH, MDPI, vol. 17(9), pages 1-20, May.
    13. Lena Reimann & Bryan Jones & Nora Bieker & Claudia Wolff & Jeroen C.J.H. Aerts & Athanasios T. Vafeidis, 2023. "Exploring spatial feedbacks between adaptation policies and internal migration patterns due to sea-level rise," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Yuan Xu & Christopher R. Esposito & Maricel Beltrán-Burgos & Heidi M. Nepf, 2022. "Competing effects of vegetation density on sedimentation in deltaic marshes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Roeland C. van de Vijsel & Jim van Belzen & Tjeerd J. Bouma & Daphne van der Wal & Bas W. Borsje & Stijn Temmerman & Loreta Cornacchia & Olivier Gourgue & Johan van de Koppel, 2023. "Vegetation controls on channel network complexity in coastal wetlands," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Xu Chen & Mingliang Zhang & Hengzhi Jiang, 2022. "Morphological Characteristics and Hydrological Connectivity Evaluation of Tidal Creeks in Coastal Wetlands," Land, MDPI, vol. 11(10), pages 1-17, October.
    17. Leonard O. Ohenhen & Manoochehr Shirzaei & Chandrakanta Ojha & Matthew L. Kirwan, 2023. "Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Yaoshen Fan & Shoubing Yu & Jinghao Wang & Peng Li & Shenliang Chen & Hongyu Ji & Ping Li & Shentang Dou, 2022. "Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation," Land, MDPI, vol. 11(10), pages 1-14, September.
    19. Xing Li & Xin Zhang & Chuanyin Qiu & Yuanqiang Duan & Shu’an Liu & Dan Chen & Lianpeng Zhang & Changming Zhu, 2020. "Rapid Loss of Tidal Flats in the Yangtze River Delta since 1974," IJERPH, MDPI, vol. 17(5), pages 1-20, March.
    20. Maricar Aguilos & Charlton Brown & Kevan Minick & Milan Fischer & Omoyemeh J. Ile & Deanna Hardesty & Maccoy Kerrigan & Asko Noormets & John King, 2021. "Millennial-Scale Carbon Storage in Natural Pine Forests of the North Carolina Lower Coastal Plain: Effects of Artificial Drainage in a Time of Rapid Sea Level Rise," Land, MDPI, vol. 10(12), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13718-:d:950711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.