IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55290-y.html
   My bibliography  Save this article

Effect of ionic-bonding d0 cations on structural durability in barium iridates for oxygen evolution electrocatalysis

Author

Listed:
  • Yelyn Sim

    (Korea Advanced Institute of Science and Technology)

  • Tae Gyu Yun

    (Korea Advanced Institute of Science and Technology)

  • Ki Hyun Park

    (Korea Advanced Institute of Science and Technology)

  • Dongho Kim

    (Korea Advanced Institute of Science and Technology)

  • Hyung Bin Bae

    (Korea Advanced Institute of Science and Technology)

  • Sung-Yoon Chung

    (Korea Advanced Institute of Science and Technology)

Abstract

Iridium has the exclusive chemistry guaranteeing both high catalytic activity and sufficient corrosion resistance in a strong acidic environment under anodic potential. Complex iridates thus attract considerable attention as high-activity electrocatalysts with less iridium utilization for the oxygen evolution reaction (OER) in water electrolyzers using a proton-exchange membrane. Here we demonstrate the effect of chemical doping on the durability of hexagonal-perovskite Bax(M,Ir)yOz-type iridates in strong acid (pH ~ 0). Some aliovalent cations are directly visualized to periodically locate at the octahedral sites bridging the two face-sharing [Ir2O9] dimer or [Ir3O12] trimers in hexagonal-perovskite polytypes. In particular, highly ionic bonding of the d0 Nb5+ and Ta5+ cations with oxygen anions results in notable suppression of lattice oxygen participation during the OER and thus effectively preserves the connectivity between the [Ir3O12] trimers without lattice collapse. Providing an in-depth understanding of the correlation between the electronic structure and bonding nature in crystals, our work suggests that proper control of chemical doping in complex oxides promises a simple but efficient tool to realize OER electrocatalysts with markedly improved durability.

Suggested Citation

  • Yelyn Sim & Tae Gyu Yun & Ki Hyun Park & Dongho Kim & Hyung Bin Bae & Sung-Yoon Chung, 2025. "Effect of ionic-bonding d0 cations on structural durability in barium iridates for oxygen evolution electrocatalysis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55290-y
    DOI: 10.1038/s41467-024-55290-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55290-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55290-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55290-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.