IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125003180.html
   My bibliography  Save this article

Interfacial electron redistribution through the Ru-N-Fe bond to stabilize high-valence metal sites for efficient electrocatalytic oxygen evolution

Author

Listed:
  • Wang, Wei
  • Li, Yingwei
  • Wang, Jia
  • Xiao, Rui
  • Liu, Kuanguan
  • Song, Xudong
  • Yu, Guangsuo
  • Ma, Baojun

Abstract

The sluggish oxygen evolution reaction (OER) represents a critical bottleneck in renewable energy technologies, such as water electrolysis. Although RuO2 is the most active material for OER, it suffers from the significant loss in performance due to the over-oxidation of Ru cations. Here, a hybrid FeV oxide/nitride electrocatalyst anchored strategy is creatively proposed to stabilize atomically isolated Ru for outstanding OER activity. The oxidation state of Ru is in high-valence (Run+, n > 4) and remains stable during the OER process. This is realized by the VOx leaching and the electrons redistributed through the interfacial Ru-N-Fe bond. Furthermore, a highly reactive Ru and Fe sites can be generated, which synergistically optimize the reaction thermodynamics and kinetics. These crucial findings offer a simple approach to design cost-efficient, highly catalytic heterogeneous system for OER in renewable energy devices.

Suggested Citation

  • Wang, Wei & Li, Yingwei & Wang, Jia & Xiao, Rui & Liu, Kuanguan & Song, Xudong & Yu, Guangsuo & Ma, Baojun, 2025. "Interfacial electron redistribution through the Ru-N-Fe bond to stabilize high-valence metal sites for efficient electrocatalytic oxygen evolution," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003180
    DOI: 10.1016/j.renene.2025.122656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125003180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.