IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59710-5.html
   My bibliography  Save this article

Synergistic niobium and manganese co-doping into RuO2 nanocrystal enables PEM water splitting under high current

Author

Listed:
  • Bichen Yuan

    (Beijing University of Chemical Technology)

  • Qian Dang

    (Beijing University of Chemical Technology)

  • Hai Liu

    (Beijing University of Chemical Technology)

  • Marshet Getaye Sendeku

    (Research Institute of Tsinghua University in Shenzhen)

  • Jian Peng

    (Western University)

  • Yameng Fan

    (University of Wollongong)

  • Liang Cai

    (Tokyo Institute of Technology)

  • Aiqing Cao

    (Beijing University of Chemical Technology)

  • Shiyao Chen

    (Beijing University of Chemical Technology)

  • Hui Li

    (Beijing University of Chemical Technology)

  • Yun Kuang

    (Research Institute of Tsinghua University in Shenzhen)

  • Fengmei Wang

    (Beijing University of Chemical Technology)

  • Xiaoming Sun

    (Beijing University of Chemical Technology)

Abstract

Low-cost ruthenium-based catalysts with high activity have emerged as promising alternatives to iridium-based counterparts for acidic oxygen evolution reaction (OER) in proton exchange membrane water electrolyzers (PEMWE), but the poor stability under high current density remains as a key challenge. Here, we utilize the synergistic complementary strategy of introducing earth-abundant Mn and Nb dopants in ruthenium dioxide (RuO2) for Nb0.1Mn0.1Ru0.8O2 nanoparticle electrocatalyst that exhibits a low overpotential of 209 mV at 10 mA cm−2 and good stability of > 400 h at 0.2 A cm−2 in 0.5 M H2SO4. Significantly, a PEMWE device fabricated with Nb0.1Mn0.1Ru0.8O2 anode can operate continuously at least for 1000 h at 0.5 A cm−2 with 59 μV h−1 decay rate. Operando Raman spectroscopy analysis, differential electrochemical mass spectroscopy measurements, X-ray absorption spectroscopy analysis and theoretical calculations indicate that OER reaction on Nb0.1Mn0.1Ru0.8O2 primarily follows the adsorbate evolution mechanism with much favorable energy barrier accompanied by a locally passivated lattice oxygen mechanism (AEM-LPLOM) and the co-existed Nb and Mn in RuO2 crystal lattice could not only stabilize the lattice oxygen, but also relieve the valence state fluctuation of Ru site to stabilize the catalyst during the reaction.

Suggested Citation

  • Bichen Yuan & Qian Dang & Hai Liu & Marshet Getaye Sendeku & Jian Peng & Yameng Fan & Liang Cai & Aiqing Cao & Shiyao Chen & Hui Li & Yun Kuang & Fengmei Wang & Xiaoming Sun, 2025. "Synergistic niobium and manganese co-doping into RuO2 nanocrystal enables PEM water splitting under high current," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59710-5
    DOI: 10.1038/s41467-025-59710-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59710-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59710-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jakob Kibsgaard & Ib Chorkendorff, 2019. "Considerations for the scaling-up of water splitting catalysts," Nature Energy, Nature, vol. 4(6), pages 430-433, June.
    2. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hong Nhan Nong & Lorenz J. Falling & Arno Bergmann & Malte Klingenhof & Hoang Phi Tran & Camillo Spöri & Rik Mom & Janis Timoshenko & Guido Zichittella & Axel Knop-Gericke & Simone Piccinin & Javier P, 2020. "Key role of chemistry versus bias in electrocatalytic oxygen evolution," Nature, Nature, vol. 587(7834), pages 408-413, November.
    4. Dafeng Zhang & Mengnan Li & Xue Yong & Haoqiang Song & Geoffrey I. N. Waterhouse & Yunfei Yi & Bingjie Xue & Dongliang Zhang & Baozhong Liu & Siyu Lu, 2023. "Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Yi Wang & Rong Yang & Yajun Ding & Bo Zhang & Hao Li & Bing Bai & Mingrun Li & Yi Cui & Jianping Xiao & Zhong-Shuai Wu, 2023. "Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jiayi Tang & Daqin Guan & Hengyue Xu & Leqi Zhao & Ushtar Arshad & Zijun Fang & Tianjiu Zhu & Manjin Kim & Chi-Wen Pao & Zhiwei Hu & Junjie Ge & Zongping Shao, 2025. "Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Wen-Xing Zheng & Xuan-Xuan Cheng & Ping-Ping Chen & Lin-Lin Wang & Ying Duan & Guo-Jin Feng & Xiao-Ran Wang & Jing-Jing Li & Chao Zhang & Zi-You Yu & Tong-Bu Lu, 2025. "Boosting the durability of RuO2 via confinement effect for proton exchange membrane water electrolyzer," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Haifeng Wang & Chao Lin & Lei Tan & Jing Shen & Xiaotong Wu & Xiangxiang Pan & Yonghui Zhao & Haojie Zhang & Yu Sun & Bingbao Mei & Han-Don Um & Qi Xiao & Wan Jiang & Xiaopeng Li & Wei Luo, 2025. "Atomic Ga triggers spatiotemporal coordination of oxygen radicals for efficient water oxidation on crystalline RuO2," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Wang, Wei & Li, Yingwei & Wang, Jia & Xiao, Rui & Liu, Kuanguan & Song, Xudong & Yu, Guangsuo & Ma, Baojun, 2025. "Interfacial electron redistribution through the Ru-N-Fe bond to stabilize high-valence metal sites for efficient electrocatalytic oxygen evolution," Renewable Energy, Elsevier, vol. 244(C).
    7. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Xing Wang & Wei Pi & Zhaobing Li & Sheng Hu & Haifeng Bao & Weilin Xu & Na Yao, 2025. "Orbital-level band gap engineering of RuO2 for enhanced acidic water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Yang Liu & Yixuan Wang & Hao Li & Min Gyu Kim & Ziyang Duan & Kainat Talat & Jin Yong Lee & Mingbo Wu & Hyoyoung Lee, 2025. "Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO2 acidic oxygen evolution electrocatalysts," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Han Wu & Jiangwei Chang & Jingkun Yu & Siyang Wang & Zhiang Hu & Geoffrey I. N. Waterhouse & Xue Yong & Zhiyong Tang & Junbiao Chang & Siyu Lu, 2024. "Atomically engineered interfaces inducing bridging oxygen-mediated deprotonation for enhanced oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yelyn Sim & Tae Gyu Yun & Ki Hyun Park & Dongho Kim & Hyung Bin Bae & Sung-Yoon Chung, 2025. "Effect of ionic-bonding d0 cations on structural durability in barium iridates for oxygen evolution electrocatalysis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    13. Lu Li & Gengwei Zhang & Chenhui Zhou & Fan Lv & Yingjun Tan & Ying Han & Heng Luo & Dawei Wang & Youxing Liu & Changshuai Shang & Lingyou Zeng & Qizheng Huang & Ruijin Zeng & Na Ye & Mingchuan Luo & S, 2024. "Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Wenxiang Zhu & Xiangcong Song & Fan Liao & Hui Huang & Qi Shao & Kun Feng & Yunjie Zhou & Mengjie Ma & Jie Wu & Hao Yang & Haiwei Yang & Meng Wang & Jie Shi & Jun Zhong & Tao Cheng & Mingwang Shao & Y, 2023. "Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    19. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59710-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.