IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62258-z.html
   My bibliography  Save this article

4f-modified Ru-O polarity as a descriptor for efficient electrocatalytic acidic oxygen evolution

Author

Listed:
  • Xiuxiu Zhang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Yuhao Zhang

    (University of Science and Technology of China)

  • Bogdan O. Protsenko

    (Southern Federal University)

  • Mikhail A. Soldatov

    (Southern Federal University)

  • Jing Zhang

    (University of Science and Technology of China)

  • Chenyu Yang

    (University of Science and Technology of China)

  • Shuowen Bo

    (University of Science and Technology of China)

  • Huijuan Wang

    (University of Science and Technology of China)

  • Xin Chen

    (Southwest Petroleum University)

  • Chao Wang

    (University of Science and Technology of China)

  • Weiren Cheng

    (University of Science and Technology of China)

  • Qinghua Liu

    (University of Science and Technology of China)

Abstract

The development of non-iridium-based oxygen evolution reaction (OER) catalysts is crucial for proton exchange membrane water electrolysis (PEMWE), but hydrogen production remains a great challenge because of sluggish OER kinetics and severe catalyst dissolution. Here, we present a 4f-induced covalent polarity modulation strategy for the construction of 4f-orbital-modified RuO2 (4f-RuO2) nanocatalysts with tunable Ru–O polarity. We find that the OER activity of 4f-RuO2 shows a volcano shape as a function of the polarity of Ru–O bond. Consequently, the best 4f-Nd-RuO2 catalyst possesses an ultra-low overpotential of 214 mV at 10 mA cm−2 and robust electrochemical stability in 0.1 M HClO4. Theoretical calculations coupled with in situ synchrotron infrared and X-ray absorption spectroscopy analyses reveal that the modulation of Ru–O polarity in RuO2 by the valence f−p−d gradient orbital coupling can modify the adsorption energy of the reaction intermediates and suppress the participation of lattice oxygen to avoid over-oxidation of Ru, which can thus serve as an effective descriptor for fine tuning the activity and durability of acidic OER nanocatalysts.

Suggested Citation

  • Xiuxiu Zhang & Yuhao Zhang & Bogdan O. Protsenko & Mikhail A. Soldatov & Jing Zhang & Chenyu Yang & Shuowen Bo & Huijuan Wang & Xin Chen & Chao Wang & Weiren Cheng & Qinghua Liu, 2025. "4f-modified Ru-O polarity as a descriptor for efficient electrocatalytic acidic oxygen evolution," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62258-z
    DOI: 10.1038/s41467-025-62258-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62258-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62258-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu Li & Gengwei Zhang & Chenhui Zhou & Fan Lv & Yingjun Tan & Ying Han & Heng Luo & Dawei Wang & Youxing Liu & Changshuai Shang & Lingyou Zeng & Qizheng Huang & Ruijin Zeng & Na Ye & Mingchuan Luo & S, 2024. "Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Qianqian Ji & Bing Tang & Xilin Zhang & Chao Wang & Hao Tan & Jie Zhao & Ruiqi Liu & Mei Sun & Hengjie Liu & Chang Jiang & Jianrong Zeng & Xingke Cai & Wensheng Yan, 2024. "Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Shuowen Bo & Xiuxiu Zhang & Chengming Wang & Huijuan Wang & Xin Chen & Wanlin Zhou & Weiren Cheng & Qinghua Liu, 2025. "Inorganic–organic hybrid cobalt spinel oxides for catalyzing the oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Han Wu & Jiangwei Chang & Jingkun Yu & Siyang Wang & Zhiang Hu & Geoffrey I. N. Waterhouse & Xue Yong & Zhiyong Tang & Junbiao Chang & Siyu Lu, 2024. "Atomically engineered interfaces inducing bridging oxygen-mediated deprotonation for enhanced oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yichao Lin & Ziqi Tian & Linjuan Zhang & Jingyuan Ma & Zheng Jiang & Benjamin J. Deibert & Ruixiang Ge & Liang Chen, 2019. "Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    7. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Wanlin Zhou & Hui Su & Weiren Cheng & Yuanli Li & Jingjing Jiang & Meihuan Liu & Feifan Yu & Wei Wang & Shiqiang Wei & Qinghua Liu, 2022. "Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Hong Nhan Nong & Lorenz J. Falling & Arno Bergmann & Malte Klingenhof & Hoang Phi Tran & Camillo Spöri & Rik Mom & Janis Timoshenko & Guido Zichittella & Axel Knop-Gericke & Simone Piccinin & Javier P, 2020. "Key role of chemistry versus bias in electrocatalytic oxygen evolution," Nature, Nature, vol. 587(7834), pages 408-413, November.
    10. Yubo Chen & Haiyan Li & Jingxian Wang & Yonghua Du & Shibo Xi & Yuanmiao Sun & Matthew Sherburne & Joel W. Ager & Adrian C. Fisher & Zhichuan J. Xu, 2019. "Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    11. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Zhen-Feng Huang & Shibo Xi & Jiajia Song & Shuo Dou & Xiaogang Li & Yonghua Du & Caozheng Diao & Zhichuan J. Xu & Xin Wang, 2021. "Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Weiren Cheng & Xu Zhao & Hui Su & Fumin Tang & Wei Che & Hui Zhang & Qinghua Liu, 2019. "Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis," Nature Energy, Nature, vol. 4(2), pages 115-122, February.
    14. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Yin Qin & Tingting Yu & Sihao Deng & Xiao-Ye Zhou & Dongmei Lin & Qian Zhang & Zeyu Jin & Danfeng Zhang & Yan-Bing He & Hua-Jun Qiu & Lunhua He & Feiyu Kang & Kaikai Li & Tong-Yi Zhang, 2022. "RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Xianbing Miao & Lifu Zhang & Liang Wu & Zhenpeng Hu & Lei Shi & Shiming Zhou, 2019. "Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Xing Zheng & Xuan-Xuan Cheng & Ping-Ping Chen & Lin-Lin Wang & Ying Duan & Guo-Jin Feng & Xiao-Ran Wang & Jing-Jing Li & Chao Zhang & Zi-You Yu & Tong-Bu Lu, 2025. "Boosting the durability of RuO2 via confinement effect for proton exchange membrane water electrolyzer," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    2. Qianqian Ji & Bing Tang & Xilin Zhang & Chao Wang & Hao Tan & Jie Zhao & Ruiqi Liu & Mei Sun & Hengjie Liu & Chang Jiang & Jianrong Zeng & Xingke Cai & Wensheng Yan, 2024. "Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Haifeng Wang & Chao Lin & Lei Tan & Jing Shen & Xiaotong Wu & Xiangxiang Pan & Yonghui Zhao & Haojie Zhang & Yu Sun & Bingbao Mei & Han-Don Um & Qi Xiao & Wan Jiang & Xiaopeng Li & Wei Luo, 2025. "Atomic Ga triggers spatiotemporal coordination of oxygen radicals for efficient water oxidation on crystalline RuO2," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Yang Liu & Yixuan Wang & Hao Li & Min Gyu Kim & Ziyang Duan & Kainat Talat & Jin Yong Lee & Mingbo Wu & Hyoyoung Lee, 2025. "Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO2 acidic oxygen evolution electrocatalysts," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Han Wu & Jiangwei Chang & Jingkun Yu & Siyang Wang & Zhiang Hu & Geoffrey I. N. Waterhouse & Xue Yong & Zhiyong Tang & Junbiao Chang & Siyu Lu, 2024. "Atomically engineered interfaces inducing bridging oxygen-mediated deprotonation for enhanced oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Yeji Park & Ho Yeon Jang & Tae Kyung Lee & Taekyung Kim & Doyeop Kim & Dongjin Kim & Hionsuck Baik & Jinwon Choi & Taehyun Kwon & Sung Jong Yoo & Seoin Back & Kwangyeol Lee, 2025. "Atomic-level Ru-Ir mixing in rutile-type (RuIr)O2 for efficient and durable oxygen evolution catalysis," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    10. Luqi Wang & Sung-Fu Hung & Sheng Zhao & Yue Wang & Suwan Bi & Shaoxiong Li & Jian-Jie Ma & Chenchen Zhang & Ying Zhang & Linlin Li & Tsung-Yi Chen & Han-Yi Chen & Feng Hu & Yuping Wu & Shengjie Peng, 2025. "Modulating the covalency of Ru-O bonds by dynamic reconstruction for efficient acidic oxygen evolution," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Han Wu & Zhanzhao Fu & Jiangwei Chang & Zhiang Hu & Jian Li & Siyang Wang & Jingkun Yu & Xue Yong & Geoffrey I. N. Waterhouse & Zhiyong Tang & Junbiao Chang & Siyu Lu, 2025. "Engineering high-density microcrystalline boundary with V-doped RuO2 for high-performance oxygen evolution in acid," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    13. Fangren Qian & Dengfeng Cao & Shuangming Chen & Yalong Yuan & Kai Chen & Peter Joseph Chimtali & Hengjie Liu & Wei Jiang & Beibei Sheng & Luocai Yi & Jiabao Huang & Chengsi Hu & Huxu Lei & Xiaojun Wu , 2025. "High-entropy RuO2 catalyst with dual-site oxide path for durable acidic oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    14. Yanfeng Shi & Lupeng Wang & Miao Liu & Zuozheng Xu & Peilin Huang & Lizhe Liu & Yuanhong Xu, 2025. "Electron–phonon coupling and coherent energy superposition induce spin-sensitive orbital degeneracy for enhanced acidic water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Yu Du & Fakang Xie & Mengfei Lu & Rongxian Lv & Wangxi Liu & Yuandong Yan & Shicheng Yan & Zhigang Zou, 2024. "Continuous strain tuning of oxygen evolution catalysts with anisotropic thermal expansion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Bichen Yuan & Qian Dang & Hai Liu & Marshet Getaye Sendeku & Jian Peng & Yameng Fan & Liang Cai & Aiqing Cao & Shiyao Chen & Hui Li & Yun Kuang & Fengmei Wang & Xiaoming Sun, 2025. "Synergistic niobium and manganese co-doping into RuO2 nanocrystal enables PEM water splitting under high current," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Hongnan Jia & Na Yao & Yiming Jin & Liqing Wu & Juan Zhu & Wei Luo, 2024. "Stabilizing atomic Ru species in conjugated sp2 carbon-linked covalent organic framework for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Meihuan Liu & Jing Zhang & Hui Su & Yaling Jiang & Wanlin Zhou & Chenyu Yang & Shuowen Bo & Jun Pan & Qinghua Liu, 2024. "In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62258-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.