IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34169-w.html
   My bibliography  Save this article

Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction

Author

Listed:
  • Wanlin Zhou

    (University of Science and Technology of China)

  • Hui Su

    (University of Science and Technology of China
    Anhui University)

  • Weiren Cheng

    (University of Science and Technology of China
    Hokkaido University)

  • Yuanli Li

    (Southwest University of Science and Technology)

  • Jingjing Jiang

    (University of Science and Technology of China)

  • Meihuan Liu

    (University of Science and Technology of China)

  • Feifan Yu

    (Shihezi University)

  • Wei Wang

    (Shihezi University)

  • Shiqiang Wei

    (University of Science and Technology of China)

  • Qinghua Liu

    (University of Science and Technology of China)

Abstract

The electrochemical oxygen reduction reaction (ORR) is at the heart of modern sustainable energy technologies. However, the linear scaling relationship of this multistep reaction now becomes the bottleneck for accelerating kinetics. Herein, we propose a strategy of using intermetallic-distance-regulated atomic-scale bimetal assembly (ABA) that can catalyse direct O‒O radical breakage without the formation of redundant *OOH intermediates, which could regulate the inherent linear scaling relationship and cause the ORR on ABA to follow a fast-kinetic dual-sites mechanism. Using in situ synchrotron spectroscopy, we directly observe that a self-adjustable N-bridged Pt = N2 = Fe assembly promotes the generation of a key intermediate state (Pt‒O‒O‒Fe) during the ORR process, resulting in high reaction kinetics and selectivity. The well-designed Pt = N2 = Fe ABA catalyst achieves a nearly two orders of magnitude enhanced kinetic current density at the half-wave potential of 0.95 V relative to commercial Pt/C and an almost 99% efficiency of 4-electron pathway selectivity, making it one of the potential ORR catalysts for application to the energy device of zinc‒air cells. This study provides a helpful design principle for developing and optimizing other efficient ORR electrocatalysts.

Suggested Citation

  • Wanlin Zhou & Hui Su & Weiren Cheng & Yuanli Li & Jingjing Jiang & Meihuan Liu & Feifan Yu & Wei Wang & Shiqiang Wei & Qinghua Liu, 2022. "Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34169-w
    DOI: 10.1038/s41467-022-34169-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34169-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34169-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhang & Rutong Si & Hanshuo Liu & Ning Chen & Qi Wang & Keegan Adair & Zhiqiang Wang & Jiatang Chen & Zhongxin Song & Junjie Li & Mohammad Norouzi Banis & Ruying Li & Tsun-Kong Sham & Meng Gu & Li, 2019. "Author Correction: Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    2. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    3. Liang Wang & Yanli Wang & Tao Xu & Haobo Liao & Chenjie Yao & Yuan Liu & Zhen Li & Zhiwen Chen & Dengyu Pan & Litao Sun & Minghong Wu, 2014. "Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    4. Shi Fang & Xiaorong Zhu & Xiaokang Liu & Jian Gu & Wei Liu & Danhao Wang & Wei Zhang & Yue Lin & Junling Lu & Shiqiang Wei & Yafei Li & Tao Yao, 2020. "Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Lei Zhang & Rutong Si & Hanshuo Liu & Ning Chen & Qi Wang & Keegan Adair & Zhiqiang Wang & Jiatang Chen & Zhongxin Song & Junjie Li & Mohammad Norouzi Banis & Ruying Li & Tsun-Kong Sham & Meng Gu & Li, 2019. "Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Nastaran Ranjbar Sahraie & Ulrike I. Kramm & Julian Steinberg & Yuanjian Zhang & Arne Thomas & Tobias Reier & Jens-Peter Paraknowitsch & Peter Strasser, 2015. "Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong-Jing Zhu & Duan-Hui Si & Hui Guo & Ziao Chen & Rong Cao & Yuan-Biao Huang, 2024. "Oxygen-tolerant CO2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Peng Zhang & Hsiao-Chien Chen & Houyu Zhu & Kuo Chen & Tuya Li & Yilin Zhao & Jiaye Li & Ruanbo Hu & Siying Huang & Wei Zhu & Yunqi Liu & Yuan Pan, 2024. "Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Meihuan Liu & Jing Zhang & Hui Su & Yaling Jiang & Wanlin Zhou & Chenyu Yang & Shuowen Bo & Jun Pan & Qinghua Liu, 2024. "In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Peng Li & Yuzhou Jiao & Yaner Ruan & Houguo Fei & Yana Men & Cunlan Guo & Yuen Wu & Shengli Chen, 2023. "Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Dong Cao & Haoxiang Xu & Hongliang Li & Chen Feng & Jie Zeng & Daojian Cheng, 2022. "Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    5. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    6. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    8. Liu, Jing & Mi, Liwei & Xing, Yanan & Wang, Tianfu & Wang, Fu, 2020. "Construction of Ti3C2 supported hybrid Co3O4/NCNTs composite as an efficient oxygen reduction electrocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 1168-1173.
    9. Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.
    10. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    11. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    12. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    13. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    14. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    15. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Sara Bakhtavar & Mehdi Mehrpooya & Mahboobeh Manoochehri & Mehrnoosh Karimkhani, 2022. "Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    17. Yuzhen Xia & Hangwei Lei & Xiaojun Wu & Guilin Hu & Hao Pan & Baizeng Fang, 2023. "Design of New Test System for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(2), pages 1-11, January.
    18. Xuan, Lingfeng & Wang, Yancheng & Lan, Jinwei & Tao, Kai & Zhou, Caiying & Mei, Deqing, 2023. "Development of cathode ordered membrane electrode assembly based on TiO2 nanowire array and ultrasonic spraying," Energy, Elsevier, vol. 264(C).
    19. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Hanif, Saadia & Iqbal, Naseem & Shi, Xuan & Noor, Tayyaba & Ali, Ghulam & Kannan, A.M., 2020. "NiCo–N-doped carbon nanotubes based cathode catalyst for alkaline membrane fuel cell," Renewable Energy, Elsevier, vol. 154(C), pages 508-516.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34169-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.