IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p965-d725503.html
   My bibliography  Save this article

Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction

Author

Listed:
  • Sara Bakhtavar

    (Department of Chemistry, Central Tehran Branch Islamic Azad University, Tehran 16511, Iran)

  • Mehdi Mehrpooya

    (Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14179, Iran)

  • Mahboobeh Manoochehri

    (Department of Chemistry, Central Tehran Branch Islamic Azad University, Tehran 16511, Iran)

  • Mehrnoosh Karimkhani

    (Department of Chemistry, Central Tehran Branch Islamic Azad University, Tehran 16511, Iran)

Abstract

In this study, a one-pot, low-temperature synthesis method is considered for the fabrication of heteroatom dope multiwall carbon nanotubes (MWCNT). Doped MWCNT is utilized as an effective electrocatalyst for oxygen reduction reaction (ORR). Single, double, and triple doping of boron, nitrogen and sulfur elements are utilized as the dopants. A reflux system with temperature of 180 °C is implemented in the doping procedure. Actually, unlike the previous studies in which doping on the carbon structures was performed using a furnace at temperatures above 700 °C, in this green and sustainable method, the triple doping on MWCNT is conducted at atmospheric pressure and low temperature. The morphology and structure of the fabricated catalysts were evaluated by Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. According to the results, the nanoparticles were encapsulated in the carbon nanotubes. Aggregated clusters of the sulfur in the case of S-MWCNT are considerable. Cyclic voltammetry (CV), rotating disk electrode, linear sweep voltammetry (LSV), and chronoamperometry electrochemical tests are employed for assessing the oxygen reduction activity of the catalysts. The results illustrate that by using this doping method, the onset potential shifts to positive values towards the oxidized MWCNT. It can be deduced that by doping the N, B, and S atoms on MWCNTs, the defects in the CNT structure, which serve as active sites for ORR application, increase. The N/S/B-doped graphitic layers have a more rapid electron transfer rate at the electrode/electrolyte interface. Thus, this can improve the electrochemistry performance and electron transfer of the MWCNTs. The best performance and electrochemical activity belonged to the NB-MWCNT catalyst (−0.122 V vs. Ag/AgCl). Also, based on the results gained from the Koutecky–Levich (KL) plot, it can be said that the ORR takes place through the 4 e − pathway.

Suggested Citation

  • Sara Bakhtavar & Mehdi Mehrpooya & Mahboobeh Manoochehri & Mehrnoosh Karimkhani, 2022. "Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:965-:d:725503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    2. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    2. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    3. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    4. Liu, Jing & Mi, Liwei & Xing, Yanan & Wang, Tianfu & Wang, Fu, 2020. "Construction of Ti3C2 supported hybrid Co3O4/NCNTs composite as an efficient oxygen reduction electrocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 1168-1173.
    5. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    6. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    7. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    8. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    9. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    10. Dadak, Ali & Mousavi, Seyed Ali & Mehrpooya, Mehdi & Kasaeian, Alibakhsh, 2022. "Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system," Renewable Energy, Elsevier, vol. 201(P1), pages 1-20.
    11. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    13. Yuzhen Xia & Hangwei Lei & Xiaojun Wu & Guilin Hu & Hao Pan & Baizeng Fang, 2023. "Design of New Test System for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(2), pages 1-11, January.
    14. Xuan, Lingfeng & Wang, Yancheng & Lan, Jinwei & Tao, Kai & Zhou, Caiying & Mei, Deqing, 2023. "Development of cathode ordered membrane electrode assembly based on TiO2 nanowire array and ultrasonic spraying," Energy, Elsevier, vol. 264(C).
    15. Yu Qiu & Mingzi Sun & Jiandong Wu & Chunxiao Chai & Shengwei Wang & Hong Huang & Xiao Zhao & Dongxu Jiao & Shan Xu & Dewen Wang & Xin Ge & Wei Zhang & Weitao Zheng & Yujiang Song & Jinchang Fan & Bolo, 2025. "Boosting oxygen reduction performances in Pd-based metallenes by co-confining interstitial H and p-block single atoms," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Youze Zeng & Xue Wang & Wei Qi & Changpeng Liu & Lanlu Lu & Meiling Xiao & Kai Li & Fei Xiao & Minhua Shao & Wei Xing & Jianbing Zhu, 2025. "Aligned d-orbital energy level of dual-atom sites catalysts for oxygen reduction reaction in anion exchange membrane fuel cells," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Hanif, Saadia & Iqbal, Naseem & Shi, Xuan & Noor, Tayyaba & Ali, Ghulam & Kannan, A.M., 2020. "NiCo–N-doped carbon nanotubes based cathode catalyst for alkaline membrane fuel cell," Renewable Energy, Elsevier, vol. 154(C), pages 508-516.
    18. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
    19. Xu, Yuhao & Luo, Xiaobing & Tu, Zhengkai & Siew Hwa Chan,, 2022. "Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application," Energy, Elsevier, vol. 259(C).
    20. Lei Huang & Min Wei & Ruijuan Qi & Chung-Li Dong & Dai Dang & Cheng-Chieh Yang & Chenfeng Xia & Chao Chen & Shahid Zaman & Fu-Min Li & Bo You & Bao Yu Xia, 2022. "An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:965-:d:725503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.