IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011893.html

Self-driving photothermal anode electrocatalyst towards the robust OER for water electrolysis

Author

Listed:
  • Cai, Jiajia
  • Tang, Xiangxuan
  • Wang, Jianmin
  • Zhang, Tingting
  • Xie, Qian
  • Mao, Keke
  • Li, Song
  • Qin, Gaowu

Abstract

The hydrogen production of water electrolysis is a potential technique route of clean energy exchange, but suffering from the sluggish oxygen evolution reaction (OER) owing to its four-electron step. In this work, we presented a significant improvement in the OER activity by photothermally triggering P-doped NiFe2O4 (NFO–P) electrocatalyst. As compared to the NiFe2O4 (NFO) catalyst, the excellent PEC performance of robust NFO–P is a result of more readliy generated active sites (Ni(III)), evidencing by the in-situ Raman spectra and polarization curves. With the near-infrared (λ = 808 nm) irradiation, the NFO–P surface temperature increases from 37 to 73 °C, and the NFO–P delivers a current density of 10 mA cm−2 at a pretty low overpotential of 191 mV (10 W/cm2), outperforms most OER catalysts including noble oxides. Photothermal enhancement in OER is attributed to photogenerated hot carriers and thermal activation. The thermal effect accelerates the kinetics, while with the assistance of the hot carrier, the rate-determining step (RDS) transforms from the O* to OOH* formation, reducing the activation energy. This study offers a thorough understanding of the combined contributions of hot carriers and thermal effects to the OER and also opens avenues for enhancing electrochemical efficiency and diminishing techno-economic costs in future applications.

Suggested Citation

  • Cai, Jiajia & Tang, Xiangxuan & Wang, Jianmin & Zhang, Tingting & Xie, Qian & Mao, Keke & Li, Song & Qin, Gaowu, 2024. "Self-driving photothermal anode electrocatalyst towards the robust OER for water electrolysis," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011893
    DOI: 10.1016/j.renene.2024.121121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Fabio Dionigi & Zhenhua Zeng & Ilya Sinev & Thomas Merzdorf & Siddharth Deshpande & Miguel Bernal Lopez & Sebastian Kunze & Ioannis Zegkinoglou & Hannes Sarodnik & Dingxin Fan & Arno Bergmann & Jakub , 2020. "In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. El-Nowihy, Ghada H. & Abdellatif, Mohammad M. & El-Deab, Mohamed S., 2024. "Magnetic field-assisted water splitting at ternary NiCoFe magnetic Nanocatalysts: Optimization study," Renewable Energy, Elsevier, vol. 226(C).
    4. J. Tyler Mefford & Andrew R. Akbashev & Minkyung Kang & Cameron L. Bentley & William E. Gent & Haitao D. Deng & Daan Hein Alsem & Young-Sang Yu & Norman J. Salmon & David A. Shapiro & Patrick R. Unwin, 2021. "Correlative operando microscopy of oxygen evolution electrocatalysts," Nature, Nature, vol. 593(7857), pages 67-73, May.
    5. Hussain, Sajjad & Vikraman, Dhanasekaran & Ali Sheikh, Zulfqar & Abbas, Zeesham & Aftab, Sikandar & Nazir, Ghazanfar & Kim, Deok-Kee & Kim, Hyun-Seok & Jung, Jongwan, 2024. "Experimental investigation on the electrodeposited nickel-based dichalcogenides for the efficient overall water splitting," Renewable Energy, Elsevier, vol. 228(C).
    6. Xiaopeng Wang & Shibo Xi & Pengru Huang & Yonghua Du & Haoyin Zhong & Qing Wang & Armando Borgna & Yong-Wei Zhang & Zhenbo Wang & Hao Wang & Zhi Gen Yu & Wee Siang Vincent Lee & Junmin Xue, 2022. "Pivotal role of reversible NiO6 geometric conversion in oxygen evolution," Nature, Nature, vol. 611(7937), pages 702-708, November.
    7. Cai, Jiajia & Liu, Cunxing & Tang, Xiangxuan & Kong, Lingna & Yu, Feiyang & Wang, Jianmin & Xie, Qian & Li, Haijin & Li, Song, 2022. "Understanding the effect of interface on the charge separation in Bi2S3@Sn: α-Fe2O3 heterojunction for photoelectrochemical water oxidation," Renewable Energy, Elsevier, vol. 191(C), pages 195-203.
    8. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & Li, Yingwei & Wang, Jia & Xiao, Rui & Liu, Kuanguan & Song, Xudong & Yu, Guangsuo & Ma, Baojun, 2025. "Interfacial electron redistribution through the Ru-N-Fe bond to stabilize high-valence metal sites for efficient electrocatalytic oxygen evolution," Renewable Energy, Elsevier, vol. 244(C).
    2. Tang, Xiangxuan & Xu, Jin & Zhang, Zhi & Xie, Qian & Wang, Jianmin & Li, Xiuling & Cai, Jiajia & Mao, Keke, 2024. "Tailoring CoAl2O4 inversion degree-driven photocarrier separation and injection for photoelectrochemical water splitting," Renewable Energy, Elsevier, vol. 237(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue Sun & Haitao Li & Yajie Song & Jiaxuan Liu & Pengxiang Ji & Xincheng Lei & Xiangzhi zhang & Qingsong Liu & Menglu Li & Biao Deng & Dong Su & Jiajun Wang, 2025. "Cascade reactors for long-life solid-state sodium–air batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Dan Wu & Longfei Hu & Xiaokang Liu & Tong Liu & Xiangyu Zhu & Qiquan Luo & Huijuan Zhang & Linlin Cao & Jinlong Yang & Zheng Jiang & Tao Yao, 2025. "Time-resolved spectroscopy uncovers deprotonation-induced reconstruction in oxygen-evolution NiFe-based (oxy)hydroxides," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    4. Yu Sun & Yong Xie & Xiaoxuan Chen & Jing Wu & Pengfei Liu & Xin Wang & Zhen Tian & Wenhao Zheng & Zhouyu Jiang & Zhuo Kang & Yue Zhang, 2025. "Updating the sub-nanometric cognition of reconstructed oxyhydroxide active phase for water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    5. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yizhen Lu & Bixuan Li & Na Xu & Zhihua Zhou & Yu Xiao & Yu Jiang & Teng Li & Sheng Hu & Yongji Gong & Yang Cao, 2023. "One-atom-thick hexagonal boron nitride co-catalyst for enhanced oxygen evolution reactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Xiaogang Sun & Wei Shen & Hao Liu & Pinxian Xi & Mietek Jaroniec & Yao Zheng & Shi-Zhang Qiao, 2024. "Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Bailin Tian & Fangyuan Wang & Pan Ran & Luhan Dai & Yang Lv & Yuxia Sun & Zhangyan Mu & Yamei Sun & Lingyu Tang & William A. Goddard & Mengning Ding, 2024. "Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Peiyu Ma & Jiawei Xue & Ji Li & Heng Cao & Ruyang Wang & Ming Zuo & Zhirong Zhang & Jun Bao, 2025. "Site-specific synergy in heterogeneous single atoms for efficient oxygen evolution," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    10. Xing Wang & Wei Pi & Zhaobing Li & Sheng Hu & Haifeng Bao & Weilin Xu & Na Yao, 2025. "Orbital-level band gap engineering of RuO2 for enhanced acidic water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Biao He & Pouya Hosseini & Tatiana Priamushko & Oliver Trost & Eko Budiyanto & Christoph Bondue & Jonas Schulwitz & Aleksander Kostka & Harun Tüysüz & Martin Muhler & Serhiy Cherevko & Kristina Tschul, 2025. "Atomic-scale insights into surface reconstruction and transformation in Co-Cr spinel oxides during the oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    12. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Alvaro Seijas-Da Silva & Adrian Hartert & Víctor Oestreicher & Jorge Romero & Camilo Jaramillo-Hernández & Luuk J. J. Muris & Grégoire Thorez & Bruno J. C. Vieira & Guillaume Ducourthial & Alice Fiocc, 2025. "Scalable synthesis of NiFe-layered double hydroxide for efficient anion exchange membrane electrolysis," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    14. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    16. Libo Wu & Wanheng Lu & Wei Li Ong & Andrew See Weng Wong & Yuanming Zhang & Tianxi Zhang & Kaiyang Zeng & Zhifeng Ren & Ghim Wei Ho, 2025. "Photothermal-promoted anion exchange membrane seawater electrolysis on a nickel-molybdenum-based catalyst," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Raj Pandya & Florian Dorchies & Davide Romanin & Jean-François Lemineur & Frédéric Kanoufi & Sylvain Gigan & Alex W. Chin & Hilton B. Aguiar & Alexis Grimaud, 2024. "Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Ben Niu & Wenxuan Jiang & Bo Jiang & Mengqi Lv & Sa Wang & Wei Wang, 2022. "Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Nan Zhang & Yang Hu & Zhuang Zhang & Chao Wu & Jiamin Zhu & Yuqing Zhang & Wei Shen & Shanshan Wu & Shibo Xi & Li An & Pinxian Xi & Chun-Hua Yan, 2025. "Crystallinity-dependent structural evolution of CoS2 catalysts for enhanced oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.