IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v611y2022i7937d10.1038_s41586-022-05296-7.html
   My bibliography  Save this article

Pivotal role of reversible NiO6 geometric conversion in oxygen evolution

Author

Listed:
  • Xiaopeng Wang

    (National University of Singapore)

  • Shibo Xi

    (Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research)

  • Pengru Huang

    (National University of Singapore
    Guilin University of Electronic Technology)

  • Yonghua Du

    (Brookhaven National Laboratory)

  • Haoyin Zhong

    (National University of Singapore)

  • Qing Wang

    (National University of Singapore)

  • Armando Borgna

    (Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research)

  • Yong-Wei Zhang

    (Agency for Science, Technology and Research)

  • Zhenbo Wang

    (Harbin Institute of Technology, Heilongjiang Sheng)

  • Hao Wang

    (National University of Singapore)

  • Zhi Gen Yu

    (Agency for Science, Technology and Research)

  • Wee Siang Vincent Lee

    (National University of Singapore)

  • Junmin Xue

    (National University of Singapore)

Abstract

Realizing an efficient electron transfer process in the oxygen evolution reaction by modifying the electronic states around the Fermi level is crucial in developing high-performing and robust electrocatalysts1–3. Typically, electron transfer proceeds solely through either a metal redox chemistry (an adsorbate evolution mechanism (AEM), with metal bands around the Fermi level) or an oxygen redox chemistry (a lattice oxygen oxidation mechanism (LOM), with oxygen bands around the Fermi level), without the concurrent occurrence of both metal and oxygen redox chemistries in the same electron transfer pathway1–15. Here we report an electron transfer mechanism that involves a switchable metal and oxygen redox chemistry in nickel-oxyhydroxide-based materials with light as the trigger. In contrast to the traditional AEM and LOM, the proposed light-triggered coupled oxygen evolution mechanism requires the unit cell to undergo reversible geometric conversion between octahedron (NiO6) and square planar (NiO4) to achieve electronic states (around the Fermi level) with alternative metal and oxygen characters throughout the oxygen evolution process. Utilizing this electron transfer pathway can bypass the potential limiting steps, that is, oxygen–oxygen bonding in AEM and deprotonation in LOM1–5,8. As a result, the electrocatalysts that operate through this route show superior activity compared with previously reported electrocatalysts. Thus, it is expected that the proposed light-triggered coupled oxygen evolution mechanism adds a layer of understanding to the oxygen evolution research scene.

Suggested Citation

  • Xiaopeng Wang & Shibo Xi & Pengru Huang & Yonghua Du & Haoyin Zhong & Qing Wang & Armando Borgna & Yong-Wei Zhang & Zhenbo Wang & Hao Wang & Zhi Gen Yu & Wee Siang Vincent Lee & Junmin Xue, 2022. "Pivotal role of reversible NiO6 geometric conversion in oxygen evolution," Nature, Nature, vol. 611(7937), pages 702-708, November.
  • Handle: RePEc:nat:nature:v:611:y:2022:i:7937:d:10.1038_s41586-022-05296-7
    DOI: 10.1038/s41586-022-05296-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05296-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05296-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Su & Chenyu Yang & Meihuan Liu & Xu Zhang & Wanlin Zhou & Yuhao Zhang & Kun Zheng & Shixun Lian & Qinghua Liu, 2024. "Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Cai, Jiajia & Tang, Xiangxuan & Wang, Jianmin & Zhang, Tingting & Xie, Qian & Mao, Keke & Li, Song & Qin, Gaowu, 2024. "Self-driving photothermal anode electrocatalyst towards the robust OER for water electrolysis," Renewable Energy, Elsevier, vol. 232(C).
    8. Yizhen Lu & Bixuan Li & Na Xu & Zhihua Zhou & Yu Xiao & Yu Jiang & Teng Li & Sheng Hu & Yongji Gong & Yang Cao, 2023. "One-atom-thick hexagonal boron nitride co-catalyst for enhanced oxygen evolution reactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7937:d:10.1038_s41586-022-05296-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.