IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61356-2.html
   My bibliography  Save this article

Scalable synthesis of NiFe-layered double hydroxide for efficient anion exchange membrane electrolysis

Author

Listed:
  • Alvaro Seijas-Da Silva

    (Universitat de València)

  • Adrian Hartert

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
    Friedrich Alexander Universität Erlangen-Nürnberg)

  • Víctor Oestreicher

    (Universitat de València)

  • Jorge Romero

    (Universitat de València)

  • Camilo Jaramillo-Hernández

    (Universitat de València)

  • Luuk J. J. Muris

    (Universitat de València)

  • Grégoire Thorez

    (Universitat de València)

  • Bruno J. C. Vieira

    (Universidade de Lisboa)

  • Guillaume Ducourthial

    (Passage Jobin Yvon)

  • Alice Fiocco

    (Passage Jobin Yvon)

  • Sébastien Legendre

    (Passage Jobin Yvon)

  • Cristián Huck-Iriart

    (San Martín
    Cerdanyola del Vallès)

  • Martín Mizrahi

    (Facultad de Ciencias Exactas. Universidad Nacional de La Plata, CCT La Plata- CONICET. Diagonal 113 y 64
    Universidad Nacional de La Plata)

  • Diego López-Alcalá

    (Universitat de València)

  • Anna T. S. Freiberg

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
    Friedrich Alexander Universität Erlangen-Nürnberg)

  • Karl J. J. Mayrhofer

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
    Friedrich Alexander Universität Erlangen-Nürnberg)

  • João C. Waerenborgh

    (Universidade de Lisboa)

  • José J. Baldoví

    (Universitat de València)

  • Serhiy Cherevko

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2))

  • Maria Varela

    (Universidad Complutense de Madrid (UCM))

  • Simon Thiele

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
    Friedrich Alexander Universität Erlangen-Nürnberg)

  • Vicent Lloret

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2))

  • Gonzalo Abellán

    (Universitat de València)

Abstract

The alkaline oxygen evolution reaction is a key step in producing green hydrogen through water electrolysis, but its large-scale industrial application remains limited due to challenges with current electrocatalysts—particularly in terms of scalability, efficiency, and long-term stability. Here we show an industrially scalable synthesis of an active NiFe layered double hydroxide (NiFe-LDH) catalyst using a room-temperature, atmospheric-pressure route. The process involves homogeneous alkalinization, where chloride ions nucleophilically attack an epoxide ring, producing a low-dimensional, defect-rich NiFe-LDH with pronounced iron clustering. In-situ spectroscopy and ab-initio calculations reveal that these structural features maximize the conversion of the NiFe-LDH to the catalytic active phase and minimize the energy barrier, improving catalytic efficiency. When used as the anode in an anion exchange membrane water electrolyzer operating at 70 °C, our material delivers 1 A cm⁻² at 1.69 V in a 5 cm2 full-cell setup, with notable durability compared to conventional NiFe-LDHs. This scalable approach could considerably lower the cost of green hydrogen production by enabling more efficient alkaline electrolyzers.

Suggested Citation

  • Alvaro Seijas-Da Silva & Adrian Hartert & Víctor Oestreicher & Jorge Romero & Camilo Jaramillo-Hernández & Luuk J. J. Muris & Grégoire Thorez & Bruno J. C. Vieira & Guillaume Ducourthial & Alice Fiocc, 2025. "Scalable synthesis of NiFe-layered double hydroxide for efficient anion exchange membrane electrolysis," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61356-2
    DOI: 10.1038/s41467-025-61356-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61356-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61356-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61356-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.