IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61356-2.html
   My bibliography  Save this article

Scalable synthesis of NiFe-layered double hydroxide for efficient anion exchange membrane electrolysis

Author

Listed:
  • Alvaro Seijas-Da Silva

    (Universitat de València)

  • Adrian Hartert

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
    Friedrich Alexander Universität Erlangen-Nürnberg)

  • Víctor Oestreicher

    (Universitat de València)

  • Jorge Romero

    (Universitat de València)

  • Camilo Jaramillo-Hernández

    (Universitat de València)

  • Luuk J. J. Muris

    (Universitat de València)

  • Grégoire Thorez

    (Universitat de València)

  • Bruno J. C. Vieira

    (Universidade de Lisboa)

  • Guillaume Ducourthial

    (Passage Jobin Yvon)

  • Alice Fiocco

    (Passage Jobin Yvon)

  • Sébastien Legendre

    (Passage Jobin Yvon)

  • Cristián Huck-Iriart

    (San Martín
    Cerdanyola del Vallès)

  • Martín Mizrahi

    (Facultad de Ciencias Exactas. Universidad Nacional de La Plata, CCT La Plata- CONICET. Diagonal 113 y 64
    Universidad Nacional de La Plata)

  • Diego López-Alcalá

    (Universitat de València)

  • Anna T. S. Freiberg

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
    Friedrich Alexander Universität Erlangen-Nürnberg)

  • Karl J. J. Mayrhofer

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
    Friedrich Alexander Universität Erlangen-Nürnberg)

  • João C. Waerenborgh

    (Universidade de Lisboa)

  • José J. Baldoví

    (Universitat de València)

  • Serhiy Cherevko

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2))

  • Maria Varela

    (Universidad Complutense de Madrid (UCM))

  • Simon Thiele

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
    Friedrich Alexander Universität Erlangen-Nürnberg)

  • Vicent Lloret

    (Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2))

  • Gonzalo Abellán

    (Universitat de València)

Abstract

The alkaline oxygen evolution reaction is a key step in producing green hydrogen through water electrolysis, but its large-scale industrial application remains limited due to challenges with current electrocatalysts—particularly in terms of scalability, efficiency, and long-term stability. Here we show an industrially scalable synthesis of an active NiFe layered double hydroxide (NiFe-LDH) catalyst using a room-temperature, atmospheric-pressure route. The process involves homogeneous alkalinization, where chloride ions nucleophilically attack an epoxide ring, producing a low-dimensional, defect-rich NiFe-LDH with pronounced iron clustering. In-situ spectroscopy and ab-initio calculations reveal that these structural features maximize the conversion of the NiFe-LDH to the catalytic active phase and minimize the energy barrier, improving catalytic efficiency. When used as the anode in an anion exchange membrane water electrolyzer operating at 70 °C, our material delivers 1 A cm⁻² at 1.69 V in a 5 cm2 full-cell setup, with notable durability compared to conventional NiFe-LDHs. This scalable approach could considerably lower the cost of green hydrogen production by enabling more efficient alkaline electrolyzers.

Suggested Citation

  • Alvaro Seijas-Da Silva & Adrian Hartert & Víctor Oestreicher & Jorge Romero & Camilo Jaramillo-Hernández & Luuk J. J. Muris & Grégoire Thorez & Bruno J. C. Vieira & Guillaume Ducourthial & Alice Fiocc, 2025. "Scalable synthesis of NiFe-layered double hydroxide for efficient anion exchange membrane electrolysis," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61356-2
    DOI: 10.1038/s41467-025-61356-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61356-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61356-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dongguo Li & Eun Joo Park & Wenlei Zhu & Qiurong Shi & Yang Zhou & Hangyu Tian & Yuehe Lin & Alexey Serov & Barr Zulevi & Ehren Donel Baca & Cy Fujimoto & Hoon T. Chung & Yu Seung Kim, 2020. "Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers," Nature Energy, Nature, vol. 5(5), pages 378-385, May.
    2. Jian Jiang & Fanfei Sun & Si Zhou & Wei Hu & Hao Zhang & Jinchao Dong & Zheng Jiang & Jijun Zhao & Jianfeng Li & Wensheng Yan & Mei Wang, 2018. "Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Panlong Zhai & Mingyue Xia & Yunzhen Wu & Guanghui Zhang & Junfeng Gao & Bo Zhang & Shuyan Cao & Yanting Zhang & Zhuwei Li & Zhaozhong Fan & Chen Wang & Xiaomeng Zhang & Jeffrey T. Miller & Licheng Su, 2021. "Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Fabio Dionigi & Zhenhua Zeng & Ilya Sinev & Thomas Merzdorf & Siddharth Deshpande & Miguel Bernal Lopez & Sebastian Kunze & Ioannis Zegkinoglou & Hannes Sarodnik & Dingxin Fan & Arno Bergmann & Jakub , 2020. "In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Ning Zhang & Xiaobin Feng & Dewei Rao & Xi Deng & Lejuan Cai & Bocheng Qiu & Ran Long & Yujie Xiong & Yang Lu & Yang Chai, 2020. "Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Fang Song & Xile Hu, 2014. "Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Wei & Yangfan Shao & Jingbo Xu & Fang Yin & Zejian Li & Haitao Qian & Yinping Wei & Liang Chang & Yu Han & Jia Li & Lin Gan, 2024. "Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Qianbao Wu & Junwu Liang & Mengjun Xiao & Chang Long & Lei Li & Zhenhua Zeng & Andraž Mavrič & Xia Zheng & Jing Zhu & Hai-Wei Liang & Hongfei Liu & Matjaz Valant & Wei Wang & Zhengxing Lv & Jiong Li &, 2023. "Non-covalent ligand-oxide interaction promotes oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Bailin Tian & Fangyuan Wang & Pan Ran & Luhan Dai & Yang Lv & Yuxia Sun & Zhangyan Mu & Yamei Sun & Lingyu Tang & William A. Goddard & Mengning Ding, 2024. "Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Yu Sun & Yong Xie & Xiaoxuan Chen & Jing Wu & Pengfei Liu & Xin Wang & Zhen Tian & Wenhao Zheng & Zhouyu Jiang & Zhuo Kang & Yue Zhang, 2025. "Updating the sub-nanometric cognition of reconstructed oxyhydroxide active phase for water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Jingjing Cao & Huaxing Liang & Jie Yang & Zhiyang Zhu & Jin Deng & Xiaodong Li & Menachem Elimelech & Xinglin Lu, 2024. "Depolymerization mechanisms and closed-loop assessment in polyester waste recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Dan Wu & Longfei Hu & Xiaokang Liu & Tong Liu & Xiangyu Zhu & Qiquan Luo & Huijuan Zhang & Linlin Cao & Jinlong Yang & Zheng Jiang & Tao Yao, 2025. "Time-resolved spectroscopy uncovers deprotonation-induced reconstruction in oxygen-evolution NiFe-based (oxy)hydroxides," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    13. Michael High & Clemens F. Patzschke & Liya Zheng & Dewang Zeng & Oriol Gavalda-Diaz & Nan Ding & Ka Ho Horace Chien & Zili Zhang & George E. Wilson & Andrey V. Berenov & Stephen J. Skinner & Kyra L. S, 2022. "Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Tao Zhang & Hui-Feng Zhao & Zheng-Jie Chen & Qun Yang & Niu Gao & Li Li & Na Luo & Jian Zheng & Shi-Da Bao & Jing Peng & Xu Peng & Xin-Wang Liu & Hai-Bin Yu, 2025. "High-entropy alloy enables multi-path electron synergism and lattice oxygen activation for enhanced oxygen evolution activity," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    15. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Suiqin Li & Shibin Wang & Yuhang Wang & Jiahui He & Kai Li & James B. Gerken & Shannon S. Stahl & Xing Zhong & Jianguo Wang, 2025. "Synergistic enhancement of electrochemical alcohol oxidation by combining NiV-layered double hydroxide with an aminoxyl radical," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    17. Wang, Wei & Li, Yingwei & Wang, Jia & Xiao, Rui & Liu, Kuanguan & Song, Xudong & Yu, Guangsuo & Ma, Baojun, 2025. "Interfacial electron redistribution through the Ru-N-Fe bond to stabilize high-valence metal sites for efficient electrocatalytic oxygen evolution," Renewable Energy, Elsevier, vol. 244(C).
    18. Wanjie Song & Kang Peng & Wei Xu & Xiang Liu & Huaqing Zhang & Xian Liang & Bangjiao Ye & Hongjun Zhang & Zhengjin Yang & Liang Wu & Xiaolin Ge & Tongwen Xu, 2023. "Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Wenhui Shi & Zezhou Li & Zhihao Gong & Zihui Liang & Hanwen Liu & Ye-Chuang Han & Huiting Niu & Bo Song & Xiaodong Chi & Jihan Zhou & Hua Wang & Bao Yu Xia & Yonggang Yao & Zhong-Qun Tian, 2023. "Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Sheng Yang & Jing Yuan & Pengpeng Xie & Bo Li & Mengxuan Li & Daojin Zhou & Liang Luo & Xiaoming Sun, 2025. "Macroscopic bubble generation promoted by nanobubble seeds as a traceless anti-fluctuation strategy for water splitting," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61356-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.