IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44663-4.html
   My bibliography  Save this article

Ultra-selective uranium separation by in-situ formation of π-f conjugated 2D uranium-organic framework

Author

Listed:
  • Qing Yun Zhang

    (East China University of Technology)

  • Lin Juan Zhang

    (Chinese Academy of Sciences)

  • Jian Qiu Zhu

    (Chinese Academy of Sciences)

  • Le Le Gong

    (State Key Laboratory of NBC Protection for Civilian)

  • Zhe Cheng Huang

    (East China University of Technology)

  • Feng Gao

    (East China University of Technology)

  • Jian Qiang Wang

    (Chinese Academy of Sciences)

  • Xian Qing Xie

    (Jiangxi Normal University)

  • Feng Luo

    (East China University of Technology)

Abstract

With the rapid development of nuclear energy, problems with uranium supply chain and nuclear waste accumulation have motivated researchers to improve uranium separation methods. Here we show a paradigm for such goal based on the in-situ formation of π-f conjugated two-dimensional uranium-organic framework. After screening five π-conjugated organic ligands, we find that 1,3,5-triformylphloroglucinol would be the best one to construct uranium-organic framework, thus resulting in 100% uranium removal from both high and low concentration with the residual concentration far below the WHO drinking water standard (15 ppb), and 97% uranium capture from natural seawater (3.3 ppb) with a record uptake efficiency of 0.64 mg·g−1·d−1. We also find that 1,3,5-triformylphloroglucinol can overcome the ion-interference issue such as the presence of massive interference ions or a 21-ions mixed solution. Our finds confirm the superiority of our separation approach over established ones, and will provide a fundamental molecule design for separation upon metal-organic framework chemistry.

Suggested Citation

  • Qing Yun Zhang & Lin Juan Zhang & Jian Qiu Zhu & Le Le Gong & Zhe Cheng Huang & Feng Gao & Jian Qiang Wang & Xian Qing Xie & Feng Luo, 2024. "Ultra-selective uranium separation by in-situ formation of π-f conjugated 2D uranium-organic framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44663-4
    DOI: 10.1038/s41467-023-44663-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44663-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44663-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Sun & Briana Aguila & Jason Perman & Aleksandr S. Ivanov & Vyacheslav S. Bryantsev & Lyndsey D. Earl & Carter W. Abney & Lukasz Wojtas & Shengqian Ma, 2018. "Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Martin I. Hoffert & Ken Caldeira & Atul K. Jain & Erik F. Haites & L. D. Danny Harvey & Seth D. Potter & Michael E. Schlesinger & Stephen H. Schneider & Robert G. Watts & Tom M. L. Wigley & Donald J. , 1998. "Energy implications of future stabilization of atmospheric CO2 content," Nature, Nature, vol. 395(6705), pages 881-884, October.
    3. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    4. DeCanio, Stephen J. & Fremstad, Anders, 2011. "Economic feasibility of the path to zero net carbon emissions," Energy Policy, Elsevier, vol. 39(3), pages 1144-1153, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    2. DeCanio, Stephen J. & Fremstad, Anders, 2011. "Economic feasibility of the path to zero net carbon emissions," Energy Policy, Elsevier, vol. 39(3), pages 1144-1153, March.
    3. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    4. Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    6. Ivan Faiella & Luciano Lavecchia, 2012. "Costs and benefits of relaunching nuclear energy in Italy," Questioni di Economia e Finanza (Occasional Papers) 114, Bank of Italy, Economic Research and International Relations Area.
    7. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    8. Valentine, Scott, 2010. "Braking wind in Australia: A critical evaluation of the renewable energy target," Energy Policy, Elsevier, vol. 38(7), pages 3668-3675, July.
    9. World Bank, 2012. "Air Transport and Energy Efficiency," World Bank Publications - Reports 16805, The World Bank Group.
    10. Halliki Kreinin, 2021. "The divergent narratives and strategies of unions in times of social-ecological crises: fracking and the UK energy sector," Transfer: European Review of Labour and Research, , vol. 27(4), pages 453-468, November.
    11. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    12. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    13. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    14. Peter Marcotullio & Andrea Sarzynski & Jochen Albrecht & Niels Schulz & Jake Garcia, 2013. "The geography of global urban greenhouse gas emissions: an exploratory analysis," Climatic Change, Springer, vol. 121(4), pages 621-634, December.
    15. Treyer, Karin & Bauer, Christian & Simons, Andrew, 2014. "Human health impacts in the life cycle of future European electricity generation," Energy Policy, Elsevier, vol. 74(S1), pages 31-44.
    16. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    17. Saadon, Syamimi & Gaillard, Leon & Menezo, Christophe & Giroux-Julien, Stéphanie, 2020. "Exergy, exergoeconomic and enviroeconomic analysis of a building integrated semi-transparent photovoltaic/thermal (BISTPV/T) by natural ventilation," Renewable Energy, Elsevier, vol. 150(C), pages 981-989.
    18. Alshammari, Yousef M. & Sarathy, S. Mani, 2017. "Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices," Energy Policy, Elsevier, vol. 101(C), pages 502-511.
    19. Sigit Perdana and Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 183-206.
    20. Ananthakrishnan, K. & Bijarniya, Jay Prakash & Sarkar, Jahar, 2021. "Energy, exergy, economic and ecological analyses of a diurnal radiative water cooler," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44663-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.