IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43649-6.html
   My bibliography  Save this article

Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics

Author

Listed:
  • Yuandong Yan

    (Nanjing University)

  • Ruyi Wang

    (Nanjing University)

  • Qian Zheng

    (Nanjing University)

  • Jiaying Zhong

    (Nanjing University)

  • Weichang Hao

    (Beihang University)

  • Shicheng Yan

    (Nanjing University
    Nanjing University)

  • Zhigang Zou

    (Nanjing University
    Nanjing University)

Abstract

A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.

Suggested Citation

  • Yuandong Yan & Ruyi Wang & Qian Zheng & Jiaying Zhong & Weichang Hao & Shicheng Yan & Zhigang Zou, 2023. "Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43649-6
    DOI: 10.1038/s41467-023-43649-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43649-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43649-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haoliang Huang & Yu-Chung Chang & Yu-Cheng Huang & Lili Li & Alexander C. Komarek & Liu Hao Tjeng & Yuki Orikasa & Chih-Wen Pao & Ting-Shan Chan & Jin-Ming Chen & Shu-Chih Haw & Jing Zhou & Yifeng Wan, 2023. "Unusual double ligand holes as catalytic active sites in LiNiO2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Hen Dotan & Avigail Landman & Stafford W. Sheehan & Kirtiman Deo Malviya & Gennady E. Shter & Daniel A. Grave & Ziv Arzi & Nachshon Yehudai & Manar Halabi & Netta Gal & Noam Hadari & Coral Cohen & Avn, 2019. "Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting," Nature Energy, Nature, vol. 4(9), pages 786-795, September.
    3. Xi Yang & Chris P. Nielsen & Shaojie Song & Michael B. McElroy, 2022. "Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen," Nature Energy, Nature, vol. 7(10), pages 955-965, October.
    4. Shi-Kui Geng & Yao Zheng & Shan-Qing Li & Hui Su & Xu Zhao & Jun Hu & Hai-Bo Shu & Mietek Jaroniec & Ping Chen & Qing-Hua Liu & Shi-Zhang Qiao, 2021. "Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst," Nature Energy, Nature, vol. 6(9), pages 904-912, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Liu & Yu-Quan Zhu & Jing Li & Ye Wang & Qiujin Shi & An-Zhen Li & Kaiyue Ji & Xi Wang & Xikang Zhao & Jinyu Zheng & Haohong Duan, 2024. "Electrosynthesis of adipic acid with high faradaic efficiency within a wide potential window," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Ji Kai Liu & Mengde Kang & Kai Huang & Hao Guan Xu & Yi Xiao Wu & Xin Yu Zhang & Yan Zhu & Hao Fan & Song Ru Fang & Yi Zhou & Cheng Lian & Peng Fei Liu & Hua Gui Yang, 2025. "Stable Ni(II) sites in Prussian blue analogue for selective, ampere-level ethylene glycol electrooxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    2. Luo, Zongkai & Zou, Guofu & Chen, Ke & Chen, Wenshang & Deng, Qihao & He, Dandi & Xiong, Zhongzhuang & Chen, Ben, 2025. "Evolution of current distribution and performance degradation mechanism of PEMFC during transient loading under gas starvation condition: An experimental study," Applied Energy, Elsevier, vol. 388(C).
    3. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Wan, Tianyi & Fu, Hao & Li, Xiaoshan & Wu, Fan & Luo, Cong & Zhang, Liqi, 2025. "Assessment of decarbonization pathway for Chinese road transport sector based on transportation-energy integration systems framework," Energy, Elsevier, vol. 317(C).
    6. Marta Wala-Kapica & Aleksander Gąsior & Artur Maciej & Szymon Smykała & Alicja Kazek-Kęsik & Mehdi Baghayeri & Wojciech Simka, 2024. "One-Pot Fast Electrochemical Synthesis of Ternary Ni-Cu-Fe Particles for Improved Urea Oxidation," Energies, MDPI, vol. 17(21), pages 1-17, October.
    7. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Huang, Zhenguang & Li, Chao & Chu, Yican & Gu, Jing & Li, Wenqing & Xie, Jiaxing & Gao, Ge & Wang, Haoyu & Fan, Meiqiang & Yao, Zhendong, 2025. "Potential and challenges for V-based solid solution hydrogen storage alloys," Energy, Elsevier, vol. 316(C).
    9. Yihan Wang & Chen Chen & Yuan Tao & Zongguo Wen, 2025. "Uneven renewable energy supply constrains the decarbonization effects of excessively deployed hydrogen-based DRI technology," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    10. Zhou, Yuan & Li, Zeyi & He, Xuefeng & Zhu, Xun, 2025. "Gas bubbles in direct liquid fuel cells: Fundamentals, impacts, and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    11. Tian, Mei-Hui & Hu, Yu-Jie & Li, Chengjiang & Tao, Yao & Wang, Honglei, 2025. "The development pathway for hydrogen fuel cell heavy duty trucks in China: An energy-environment-economy life cycle assessment approach," Energy, Elsevier, vol. 322(C).
    12. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Wang, Peng-Tao & Xu, Qing-Chuang & Wang, Fei-Yin & Xu, Mao, 2025. "Study on the coupling of the iron and steel industry with renewable energy for low-carbon production: A case study of matching steel plants with photovoltaic power plants in China," Energy, Elsevier, vol. 320(C).
    14. Xu Luo & Hongyu Zhao & Xin Tan & Sheng Lin & Kesong Yu & Xueqin Mu & Zhenhua Tao & Pengxia Ji & Shichun Mu, 2024. "Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Zhao, Meng-Jie & He, Qian & Xiang, Ting & Ya, Hua-Qin & Luo, Hao & Wan, Shanhong & Ding, Jun & He, Jian-Bo, 2023. "Automatic operation of decoupled water electrolysis based on bipolar electrode," Renewable Energy, Elsevier, vol. 203(C), pages 583-591.
    16. Weiss, R. & Kanto, T. & Kiviranta, K. & Ikäheimo, J. & Kärki, J., 2025. "Large scale power-to-X production enabling hydrogen valleys: A case study of future industrial hydrogen valley opportunity in Finland," Applied Energy, Elsevier, vol. 388(C).
    17. Guo, Zhi & Mao, Xianqiang & Lu, Jianhong & Gao, Yubing & Chen, Xing & Zhang, Shining & Ma, Zhiyuan, 2024. "Can a new power system create more employment in China?," Energy, Elsevier, vol. 295(C).
    18. Pengtang Wang & Xintong Gao & Min Zheng & Mietek Jaroniec & Yao Zheng & Shi–Zhang Qiao, 2025. "Urine electrooxidation for energy–saving hydrogen generation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    19. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Boyan Liu & Xin Wang & Yingjuan Zhang & Mingshan Zhu & Chenxin Zhang & Shaobin Li & Yanhang Ma & Wei Huang & Songcan Wang, 2025. "A standalone bismuth vanadate-silicon artificial leaf achieving 8.4% efficiency for hydrogen production," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43649-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.