IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41590-2.html
   My bibliography  Save this article

Promoting ordering degree of intermetallic fuel cell catalysts by low-melting-point metal doping

Author

Listed:
  • Ru-Yang Shao

    (University of Science and Technology of China)

  • Xiao-Chu Xu

    (University of Science and Technology of China)

  • Zhen-Hua Zhou

    (University of Science and Technology of China)

  • Wei-Jie Zeng

    (University of Science and Technology of China)

  • Tian-Wei Song

    (University of Science and Technology of China)

  • Peng Yin

    (University of Science and Technology of China)

  • Ang Li

    (University of Science and Technology of China)

  • Chang-Song Ma

    (University of Science and Technology of China)

  • Lei Tong

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Yuan Kong

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Hai-Wei Liang

    (University of Science and Technology of China
    University of Science and Technology of China)

Abstract

Carbon supported intermetallic compound nanoparticles with high activity and stability are promising cathodic catalysts for oxygen reduction reaction in proton-exchange-membrane fuel cells. However, the synthesis of intermetallic catalysts suffers from large diffusion barrier for atom ordering, resulting in low ordering degree and limited performance. We demonstrate a low-melting-point metal doping strategy for the synthesis of highly ordered L10-type M-doped PtCo (M = Ga, Pb, Sb, Cu) intermetallic catalysts. We find that the ordering degree of the M-doped PtCo catalysts increases with the decrease of melting point of M. Theoretic studies reveal that the low-melting-point metal doping can decrease the energy barrier for atom diffusion. The prepared highly ordered Ga-doped PtCo catalyst exhibits a large mass activity of 1.07 A mgPt−1 at 0.9 V in H2-O2 fuel cells and a rated power density of 1.05 W cm−2 in H2-air fuel cells, with a Pt loading of 0.075 mgPt cm−2.

Suggested Citation

  • Ru-Yang Shao & Xiao-Chu Xu & Zhen-Hua Zhou & Wei-Jie Zeng & Tian-Wei Song & Peng Yin & Ang Li & Chang-Song Ma & Lei Tong & Yuan Kong & Hai-Wei Liang, 2023. "Promoting ordering degree of intermetallic fuel cell catalysts by low-melting-point metal doping," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41590-2
    DOI: 10.1038/s41467-023-41590-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41590-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41590-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    2. Wei-Jie Zeng & Chang Wang & Qiang-Qiang Yan & Peng Yin & Lei Tong & Hai-Wei Liang, 2022. "Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    2. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    3. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    4. Liu, Jing & Mi, Liwei & Xing, Yanan & Wang, Tianfu & Wang, Fu, 2020. "Construction of Ti3C2 supported hybrid Co3O4/NCNTs composite as an efficient oxygen reduction electrocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 1168-1173.
    5. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    6. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    7. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    8. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    9. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    10. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Sara Bakhtavar & Mehdi Mehrpooya & Mahboobeh Manoochehri & Mehrnoosh Karimkhani, 2022. "Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    12. Yuzhen Xia & Hangwei Lei & Xiaojun Wu & Guilin Hu & Hao Pan & Baizeng Fang, 2023. "Design of New Test System for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(2), pages 1-11, January.
    13. Xuan, Lingfeng & Wang, Yancheng & Lan, Jinwei & Tao, Kai & Zhou, Caiying & Mei, Deqing, 2023. "Development of cathode ordered membrane electrode assembly based on TiO2 nanowire array and ultrasonic spraying," Energy, Elsevier, vol. 264(C).
    14. Hanif, Saadia & Iqbal, Naseem & Shi, Xuan & Noor, Tayyaba & Ali, Ghulam & Kannan, A.M., 2020. "NiCo–N-doped carbon nanotubes based cathode catalyst for alkaline membrane fuel cell," Renewable Energy, Elsevier, vol. 154(C), pages 508-516.
    15. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
    16. Lei Huang & Min Wei & Ruijuan Qi & Chung-Li Dong & Dai Dang & Cheng-Chieh Yang & Chenfeng Xia & Chao Chen & Shahid Zaman & Fu-Min Li & Bo You & Bao Yu Xia, 2022. "An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Seok Hee Lee & Sung Pil Woo & Nitul Kakati & Dong-Joo Kim & Young Soo Yoon, 2018. "A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems," Energies, MDPI, vol. 11(11), pages 1-81, November.
    18. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    19. Mohideen, Mohamedazeem M. & Liu, Yong & Ramakrishna, Seeram, 2020. "Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation," Applied Energy, Elsevier, vol. 257(C).
    20. Jiajun Zhao & Cehuang Fu & Ke Ye & Zheng Liang & Fangling Jiang & Shuiyun Shen & Xiaoran Zhao & Lu Ma & Zulipiya Shadike & Xiaoming Wang & Junliang Zhang & Kun Jiang, 2022. "Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41590-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.