IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40302-0.html
   My bibliography  Save this article

Near-term pathways for decarbonizing global concrete production

Author

Listed:
  • Josefine A. Olsson

    (University of California, Davis)

  • Sabbie A. Miller

    (University of California, Davis)

  • Mark G. Alexander

    (University of Cape Town)

Abstract

Growing urban populations and deteriorating infrastructure are driving unprecedented demands for concrete, a material for which there is no alternative that can meet its functional capacity. The production of concrete, more particularly the hydraulic cement that glues the material together, is one of the world’s largest sources of greenhouse gas (GHG) emissions. While this is a well-studied source of emissions, the consequences of efficient structural design decisions on mitigating these emissions are not yet well known. Here, we show that a combination of manufacturing and engineering decisions have the potential to reduce over 76% of the GHG emissions from cement and concrete production, equivalent to 3.6 Gt CO2-eq lower emissions in 2100. The studied methods similarly result in more efficient utilization of resources by lowering cement demand by up to 65%, leading to an expected reduction in all other environmental burdens. These findings show that the flexibility within current concrete design approaches can contribute to climate mitigation without requiring heavy capital investment in alternative manufacturing methods or alternative materials.

Suggested Citation

  • Josefine A. Olsson & Sabbie A. Miller & Mark G. Alexander, 2023. "Near-term pathways for decarbonizing global concrete production," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40302-0
    DOI: 10.1038/s41467-023-40302-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40302-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40302-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ioannidou, Dimitra & Meylan, Grégoire & Sonnemann, Guido & Habert, Guillaume, 2017. "Is gravel becoming scarce? Evaluating the local criticality of construction aggregates," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 25-33.
    2. Zhi Cao & Rupert J. Myers & Richard C. Lupton & Huabo Duan & Romain Sacchi & Nan Zhou & T. Reed Miller & Jonathan M. Cullen & Quansheng Ge & Gang Liu, 2020. "The sponge effect and carbon emission mitigation potentials of the global cement cycle," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Izhar Hussain Shah & Sabbie A. Miller & Daqian Jiang & Rupert J. Myers, 2022. "Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuma Watari & André Cabrera Serrenho & Lukas Gast & Jonathan Cullen & Julian Allwood, 2023. "Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Izhar Hussain Shah & Sabbie A. Miller & Daqian Jiang & Rupert J. Myers, 2022. "Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Sarah Pamenter & Rupert J. Myers, 2021. "Decarbonizing the cementitious materials cycle: A whole‐systems review of measures to decarbonize the cement supply chain in the UK and European contexts," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 359-376, April.
    5. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    7. Xi Yang & Chris P. Nielsen & Shaojie Song & Michael B. McElroy, 2022. "Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen," Nature Energy, Nature, vol. 7(10), pages 955-965, October.
    8. Grace D. Kroeger & Matthew G. Burgess, 2024. "Electric utility plans are consistent with Renewable Portfolio Standards and Clean Energy Standards in most US states," Climatic Change, Springer, vol. 177(1), pages 1-18, January.
    9. Stede, Jan & Pauliuk, Stefan & Hardadi, Gilang & Neuhoff, Karsten, 2021. "Carbon pricing of basic materials: Incentives and risks for the value chain and consumers," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 189.
    10. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    11. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    12. Inka Randebrock & Sylvia Marinova & Vanessa Bach & Rosalie Arendt & Matthias Finkbeiner, 2023. "Adapting the ESSENZ Method to Assess the Criticality of Construction Materials: Case Study of Herne, Germany," Resources, MDPI, vol. 12(8), pages 1-18, August.
    13. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    14. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    15. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    16. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    17. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40302-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.