IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39523-0.html
   My bibliography  Save this article

Fundamental investigations on the ionic transport and thermodynamic properties of non-aqueous potassium-ion electrolytes

Author

Listed:
  • Shobhan Dhir

    (University of Oxford)

  • Ben Jagger

    (University of Oxford)

  • Alen Maguire

    (University of Oxford)

  • Mauro Pasta

    (University of Oxford)

Abstract

Non-aqueous potassium-ion batteries (KIBs) represent a promising complementary technology to lithium-ion batteries due to the availability and low cost of potassium. Moreover, the lower charge density of K+ compared to Li+ favours the ion-transport properties in liquid electrolyte solutions, thus, making KIBs potentially capable of improved rate capability and low-temperature performance. However, a comprehensive study of the ionic transport and thermodynamic properties of non-aqueous K-ion electrolyte solutions is not available. Here we report the full characterisation of the ionic transport and thermodynamic properties of a model non-aqueous K-ion electrolyte solution system comprising potassium bis(fluorosulfonyl)imide (KFSI) salt and 1,2-dimethoxyethane (DME) solvent and compare it with its Li-ion equivalent (i.e., LiFSI:DME), over the concentration range 0.25–2 molal. Using tailored K metal electrodes, we demonstrate that KFSI:DME electrolyte solutions show higher salt diffusion coefficients and cation transference numbers than LiFSI:DME solutions. Finally, via Doyle-Fuller-Newman (DFN) simulations, we investigate the K-ion and Li-ion storage properties for K∣∣graphite and Li∣∣graphite cells.

Suggested Citation

  • Shobhan Dhir & Ben Jagger & Alen Maguire & Mauro Pasta, 2023. "Fundamental investigations on the ionic transport and thermodynamic properties of non-aqueous potassium-ion electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39523-0
    DOI: 10.1038/s41467-023-39523-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39523-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39523-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jack Fawdon & Johannes Ihli & Fabio La Mantia & Mauro Pasta, 2021. "Characterising lithium-ion electrolytes via operando Raman microspectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jiyu Zhang & Yongliang Yan & Xin Wang & Yanyan Cui & Zhengfeng Zhang & Sen Wang & Zhengkun Xie & Pengfei Yan & Weihua Chen, 2023. "Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Dominik Emmel & Simon Kunz & Nick Blume & Yongchai Kwon & Thomas Turek & Christine Minke & Daniel Schröder, 2023. "Benchmarking organic active materials for aqueous redox flow batteries in terms of lifetime and cost," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Imanol Landa-Medrano & Idoia Urdampilleta & Iker Castrillo & Hans-Jürgen Grande & Iratxe de Meatza & Aitor Eguia-Barrio, 2024. "Making Room for Silicon: Including SiO x in a Graphite-Based Anode Formulation and Harmonization in 1 Ah Cells," Energies, MDPI, vol. 17(7), pages 1-21, March.
    8. V. Reisecker & F. Flatscher & L. Porz & C. Fincher & J. Todt & I. Hanghofer & V. Hennige & M. Linares-Moreau & P. Falcaro & S. Ganschow & S. Wenner & Y.-M. Chiang & J. Keckes & J. Fleig & D. Rettenwan, 2023. "Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Daiwei Wang & Li-Ji Jhang & Rong Kou & Meng Liao & Shiyao Zheng & Heng Jiang & Pei Shi & Guo-Xing Li & Kui Meng & Donghai Wang, 2023. "Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Ziyu Song & Fangfang Chen & Maria Martinez-Ibañez & Wenfang Feng & Maria Forsyth & Zhibin Zhou & Michel Armand & Heng Zhang, 2023. "A reflection on polymer electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Lander Lizaso & Idoia Urdampilleta & Miguel Bengoechea & Iker Boyano & Hans-Jürgen Grande & Imanol Landa-Medrano & Aitor Eguia-Barrio & Iratxe de Meatza, 2023. "Waterborne LiNi 0.5 Mn 1.5 O 4 Cathode Formulation Optimization through Design of Experiments and Upscaling to 1 Ah Li-Ion Pouch Cells," Energies, MDPI, vol. 16(21), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39523-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.