IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36793-6.html
   My bibliography  Save this article

A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries

Author

Listed:
  • Guangzhao Zhang

    (Southern University of Science and Technology of China)

  • Jian Chang

    (Southern University of Science and Technology of China)

  • Liguang Wang

    (Zhejiang University)

  • Jiawei Li

    (China University of Petroleum (East China) Qingdao)

  • Chaoyang Wang

    (South China University of Technology)

  • Ruo Wang

    (Southern University of Science and Technology of China)

  • Guoli Shi

    (Southern University of Science and Technology of China)

  • Kai Yu

    (Southern University of Science and Technology of China)

  • Wei Huang

    (Southern University of Science and Technology)

  • Honghe Zheng

    (Soochow University)

  • Tianpin Wu

    (Zhejiang University)

  • Yonghong Deng

    (Southern University of Science and Technology of China)

  • Jun Lu

    (Zhejiang University)

Abstract

The electrochemical stability window of the electrolyte solution limits the energy content of non-aqueous lithium metal batteries. In particular, although electrolytes comprising fluorinated solvents show good oxidation stability against high-voltage positive electrode active materials such as LiNi0.8Co0.1Mn0.1O2 (NCM811), the ionic conductivity is adversely affected and, thus, the battery cycling performance at high current rates and low temperatures. To address these issues, here we report the design and synthesis of a monofluoride ether as an electrolyte solvent with Li-F and Li-O tridentate coordination chemistries. The monofluoro substituent (-CH2F) in the solvent molecule, differently from the difluoro (-CHF2) and trifluoro (-CF3) counterparts, improves the electrolyte ionic conductivity without narrowing the oxidation stability. Indeed, the electrolyte solution with the monofluoride ether solvent demonstrates good compatibility with positive and negative electrodes in a wide range of temperatures (i.e., from −60 °C to +60 °C) and at high charge/discharge rates (e.g., at 17.5 mA cm−2). Using this electrolyte solution, we assemble and test a 320 mAh Li||NCM811 multi-layer pouch cell, which delivers a specific energy of 426 Wh kg−1 (based on the weight of the entire cell) and capacity retention of 80% after 200 cycles at 0.8/8 mA cm−2 charge/discharge rate and 30 °C.

Suggested Citation

  • Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36793-6
    DOI: 10.1038/s41467-023-36793-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36793-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36793-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaojiang Niu & Dianying Liu & Joshua A. Lochala & Cassidy S. Anderson & Xia Cao & Mark E. Gross & Wu Xu & Ji-Guang Zhang & M. Stanley Whittingham & Jie Xiao & Jun Liu, 2021. "Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries," Nature Energy, Nature, vol. 6(7), pages 723-732, July.
    2. Yue Gao & Tomas Rojas & Ke Wang & Shuai Liu & Daiwei Wang & Tianhang Chen & Haiying Wang & Anh T. Ngo & Donghai Wang, 2020. "Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface," Nature Energy, Nature, vol. 5(7), pages 534-542, July.
    3. Chengbin Jin & Tiefeng Liu & Ouwei Sheng & Matthew Li & Tongchao Liu & Yifei Yuan & Jianwei Nai & Zhijin Ju & Wenkui Zhang & Yujing Liu & Yao Wang & Zhan Lin & Jun Lu & Xinyong Tao, 2021. "Rejuvenating dead lithium supply in lithium metal anodes by iodine redox," Nature Energy, Nature, vol. 6(4), pages 378-387, April.
    4. Weijiang Xue & Mingjun Huang & Yutao Li & Yun Guang Zhu & Rui Gao & Xianghui Xiao & Wenxu Zhang & Sipei Li & Guiyin Xu & Yang Yu & Peng Li & Jeffrey Lopez & Daiwei Yu & Yanhao Dong & Weiwei Fan & Zhe , 2021. "Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte," Nature Energy, Nature, vol. 6(5), pages 495-505, May.
    5. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Zhiao Yu & Paul E. Rudnicki & Zewen Zhang & Zhuojun Huang & Hasan Celik & Solomon T. Oyakhire & Yuelang Chen & Xian Kong & Sang Cheol Kim & Xin Xiao & Hansen Wang & Yu Zheng & Gaurav A. Kamat & Mun Se, 2022. "Rational solvent molecule tuning for high-performance lithium metal battery electrolytes," Nature Energy, Nature, vol. 7(1), pages 94-106, January.
    7. Qifeng Zheng & Yuki Yamada & Rui Shang & Seongjae Ko & Yun-Yang Lee & Kijae Kim & Eiichi Nakamura & Atsuo Yamada, 2020. "A cyclic phosphate-based battery electrolyte for high voltage and safe operation," Nature Energy, Nature, vol. 5(4), pages 291-298, April.
    8. John Holoubek & Haodong Liu & Zhaohui Wu & Yijie Yin & Xing Xing & Guorui Cai & Sicen Yu & Hongyao Zhou & Tod A. Pascal & Zheng Chen & Ping Liu, 2021. "Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature," Nature Energy, Nature, vol. 6(3), pages 303-313, March.
    9. Luhan Ye & Xin Li, 2021. "A dynamic stability design strategy for lithium metal solid state batteries," Nature, Nature, vol. 593(7858), pages 218-222, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Shuoqing Zhang & Ruhong Li & Nan Hu & Tao Deng & Suting Weng & Zunchun Wu & Di Lu & Haikuo Zhang & Junbo Zhang & Xuefeng Wang & Lixin Chen & Liwu Fan & Xiulin Fan, 2022. "Tackling realistic Li+ flux for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yangyang Feng & Yong Li & Jing Lin & Huyue Wu & Lei Zhu & Xiang Zhang & Linlin Zhang & Chuan-Fu Sun & Maoxiang Wu & Yaobing Wang, 2023. "Production of high-energy 6-Ah-level Li | |LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yan Zhao & Tianhong Zhou & Mounir Mensi & Jang Wook Choi & Ali Coskun, 2023. "Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Daiwei Wang & Li-Ji Jhang & Rong Kou & Meng Liao & Shiyao Zheng & Heng Jiang & Pei Shi & Guo-Xing Li & Kui Meng & Donghai Wang, 2023. "Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    10. Chuanlong Wang & Akila C. Thenuwara & Jianmin Luo & Pralav P. Shetty & Matthew T. McDowell & Haoyu Zhu & Sergio Posada-Pérez & Hui Xiong & Geoffroy Hautier & Weiyang Li, 2022. "Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Jiawei Chen & Daoming Zhang & Lei Zhu & Mingzhu Liu & Tianle Zheng & Jie Xu & Jun Li & Fei Wang & Yonggang Wang & Xiaoli Dong & Yongyao Xia, 2024. "Hybridizing carbonate and ether at molecular scales for high-energy and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36793-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.