IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63262-z.html
   My bibliography  Save this article

Neighboring alkenyl group participated ether-based electrolyte for wide-temperature lithium metal batteries

Author

Listed:
  • Jimin Tang

    (Jilin University)

  • Zhixuan Wei

    (Jilin University)

  • Junxiu Wu

    (Zhejiang University)

  • Zhuangzhuang Cui

    (University of Science and Technology of China)

  • Ruiyuan Tian

    (Jilin University)

  • Heng Jiang

    (Jilin University)

  • Fei Du

    (Jilin University)

  • Jun Lu

    (Zhejiang University)

Abstract

The extensive dendrite formation and unstable interfacial chemical environment pose significant obstacles to operating lithium metal batteries under extreme conditions. Here, we develop an allyl ether electrolyte operated across a wide-temperature range. Leveraging the neighboring group participation effect of alkenyl groups, the designed electrolyte possesses a quasi-weak solvation structure with low desolvation energy. Moreover, this effect facilitates the anion decomposition to form a dual-layer solid electrolyte interface, suppressing dendrite formation and surface parasitic reactions. Therefore, the single-salt, single-solvent electrolyte enables reversible lithium plating/stripping with high Coulombic efficiencies from −40 °C to 60 °C. The assembled 50 μm lithium | |3.5 mAh cm−2 sulfurized polyacrylonitrile full cells achieve capacity retention of 93.1% after 150 stable cycles (0.2 C) at 25 °C, where the positive electrode could retain 78% of its room temperature capacity at −40 °C. Moreover, the pouch cells demonstrate promising cycling stabilities, with a capacity retention of 94.8% (0.5 C), 92.4% (0.2 C), and 72.7% (0.1 C) after 100 cycles at 60 °C, 25 °C, and −40 °C, respectively. This terminal group modification strategy offers perspectives for wide-temperature electrolyte design, representing a crucial advancement in enhancing the performance of lithium metal batteries.

Suggested Citation

  • Jimin Tang & Zhixuan Wei & Junxiu Wu & Zhuangzhuang Cui & Ruiyuan Tian & Heng Jiang & Fei Du & Jun Lu, 2025. "Neighboring alkenyl group participated ether-based electrolyte for wide-temperature lithium metal batteries," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63262-z
    DOI: 10.1038/s41467-025-63262-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63262-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63262-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jijian Xu & Jiaxun Zhang & Travis P. Pollard & Qingdong Li & Sha Tan & Singyuk Hou & Hongli Wan & Fu Chen & Huixin He & Enyuan Hu & Kang Xu & Xiao-Qing Yang & Oleg Borodin & Chunsheng Wang, 2023. "Electrolyte design for Li-ion batteries under extreme operating conditions," Nature, Nature, vol. 614(7949), pages 694-700, February.
    2. Zheng Li & Harsha Rao & Rasha Atwi & Bhuvaneswari M. Sivakumar & Bharat Gwalani & Scott Gray & Kee Sung Han & Thomas A. Everett & Tanvi A. Ajantiwalay & Vijayakumar Murugesan & Nav Nidhi Rajput & Vila, 2023. "Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Zhiao Yu & Paul E. Rudnicki & Zewen Zhang & Zhuojun Huang & Hasan Celik & Solomon T. Oyakhire & Yuelang Chen & Xian Kong & Sang Cheol Kim & Xin Xiao & Hansen Wang & Yu Zheng & Gaurav A. Kamat & Mun Se, 2022. "Rational solvent molecule tuning for high-performance lithium metal battery electrolytes," Nature Energy, Nature, vol. 7(1), pages 94-106, January.
    4. Guo-Xing Li & Volodymyr Koverga & Au Nguyen & Rong Kou & Musawenkosi Ncube & Heng Jiang & Ke Wang & Meng Liao & Hanzeng Guo & Jun Chen & Naveen Dandu & Anh T. Ngo & Donghai Wang, 2024. "Enhancing lithium-metal battery longevity through minimized coordinating diluent," Nature Energy, Nature, vol. 9(7), pages 817-827, July.
    5. Yang Jin & Kai Liu & Jialiang Lang & Denys Zhuo & Zeya Huang & Chang-an Wang & Hui Wu & Yi Cui, 2018. "An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage," Nature Energy, Nature, vol. 3(9), pages 732-738, September.
    6. Zhiao Yu & Hansen Wang & Xian Kong & William Huang & Yuchi Tsao & David G. Mackanic & Kecheng Wang & Xinchang Wang & Wenxiao Huang & Snehashis Choudhury & Yu Zheng & Chibueze V. Amanchukwu & Samantha , 2020. "Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries," Nature Energy, Nature, vol. 5(7), pages 526-533, July.
    7. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Yawei Chen & Menghao Li & Yue Liu & Yulin Jie & Wanxia Li & Fanyang Huang & Xinpeng Li & Zixu He & Xiaodi Ren & Yunhua Chen & Xianhui Meng & Tao Cheng & Meng Gu & Shuhong Jiao & Ruiguo Cao, 2023. "Origin of dendrite-free lithium deposition in concentrated electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yuki Yamada & Jianhui Wang & Seongjae Ko & Eriko Watanabe & Atsuo Yamada, 2019. "Advances and issues in developing salt-concentrated battery electrolytes," Nature Energy, Nature, vol. 4(4), pages 269-280, April.
    10. John Holoubek & Haodong Liu & Zhaohui Wu & Yijie Yin & Xing Xing & Guorui Cai & Sicen Yu & Hongyao Zhou & Tod A. Pascal & Zheng Chen & Ping Liu, 2021. "Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature," Nature Energy, Nature, vol. 6(3), pages 303-313, March.
    11. Yue Gao & Tomas Rojas & Ke Wang & Shuai Liu & Daiwei Wang & Tianhang Chen & Haiying Wang & Anh T. Ngo & Donghai Wang, 2020. "Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface," Nature Energy, Nature, vol. 5(7), pages 534-542, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chutao Wang & Zongqiang Sun & Yaqing Liu & Lin Liu & Xiaoting Yin & Qing Hou & Jingmin Fan & Jiawei Yan & Ruming Yuan & Mingsen Zheng & Quanfeng Dong, 2024. "A weakly coordinating-intervention strategy for modulating Na+ solvation sheathes and constructing robust interphase in sodium-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Guangzhao Zhang & Tong Zhang & Zhen Zhang & Ruilin He & Qingrong Wang & Shang-Sen Chi & Yanming Cui & Meng Danny Gu & Zhongbo Liu & Jian Chang & Chaoyang Wang & Kang Xu & Yonghong Deng, 2025. "High-energy and fast-charging lithium metal batteries enabled by tuning Li+-solvation via electron-withdrawing and lithiophobicity functionality," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Weili Zhang & Yang Lu & Lei Wan & Pan Zhou & Yingchun Xia & Shuaishuai Yan & Xiaoxia Chen & Hangyu Zhou & Hao Dong & Kai Liu, 2022. "Engineering a passivating electric double layer for high performance lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Zhixin Xu & Xiyue Zhang & Jun Yang & Xuzixu Cui & Yanna Nuli & Jiulin Wang, 2024. "High-voltage and intrinsically safe electrolytes for Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Weili Zhang & Yang Lu & Qingqing Feng & Hao Wang & Guangyu Cheng & Hao Liu & Qingbin Cao & Zhenjun luo & Pan Zhou & Yingchun Xia & Wenhui Hou & Kun Zhao & Chunyi Du & Kai Liu, 2025. "Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Yan Zhao & Tianhong Zhou & Mounir Mensi & Jang Wook Choi & Ali Coskun, 2023. "Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Rong Gu & Da Zhang & Shengtao Xu & Xiaoyu Guo & Yuan Xiao & Zhimeng Sheng & Qunjie Xu & Jinting Xu & Sheng Zhu & Kexuan Liao & Shuaiqi Gong & Penghui Shi & YuLin Min, 2025. "Thermoresponsive ether-based electrolyte for wide temperature operating lithium metal batteries," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    12. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Wujie Yang & Aoyuan Chen & Ping He & Haoshen Zhou, 2025. "Advancing lithium metal electrode beyond 99.9% coulombic efficiency via super-saturated electrolyte with compressed solvation structure," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Muhammad Mominur Rahman & Sha Tan & Yang Yang & Hui Zhong & Sanjit Ghose & Iradwikanari Waluyo & Adrian Hunt & Lu Ma & Xiao-Qing Yang & Enyuan Hu, 2023. "An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Yanhua Zhang & Rui Qiao & Qiaona Nie & Peiyu Zhao & Yong Li & Yunfei Hong & Shengjie Chen & Chao Li & Baoyu Sun & Hao Fan & Junkai Deng & Jingying Xie & Feng Liu & Jiangxuan Song, 2024. "Synergetic regulation of SEI mechanics and crystallographic orientation for stable lithium metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Shuoqing Zhang & Ruhong Li & Nan Hu & Tao Deng & Suting Weng & Zunchun Wu & Di Lu & Haikuo Zhang & Junbo Zhang & Xuefeng Wang & Lixin Chen & Liwu Fan & Xiulin Fan, 2022. "Tackling realistic Li+ flux for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Jiawei Chen & Daoming Zhang & Lei Zhu & Mingzhu Liu & Tianle Zheng & Jie Xu & Jun Li & Fei Wang & Yonggang Wang & Xiaoli Dong & Yongyao Xia, 2024. "Hybridizing carbonate and ether at molecular scales for high-energy and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Ruhong Li & Xiaoteng Huang & Haikuo Zhang & Jinze Wang & Yingzhu Fan & Yiqiang Huang & Jia Liu & Ming Yang & Yuan Yu & Xuezhang Xiao & Yuanzhong Tan & Hao Bin Wu & Liwu Fan & Tao Deng & Lixin Chen & Y, 2025. "A path towards high lithium-metal electrode coulombic efficiency based on electrolyte interaction motif descriptor," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Qianli Xing & Jung Min Lee & Ziqi Yang & Reid C. Lehn & Fang Liu, 2025. "Directing selective solvent presentations at electrochemical interfaces to enable initially anode-free sodium metal batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    20. Zhoujie Lao & Kehao Tao & Xiao Xiao & Haotian Qu & Xinru Wu & Zhiyuan Han & Runhua Gao & Jian Wang & Xian Wu & An Chen & Lei Shi & Chengshuai Chang & Yanze Song & Xiangyu Wang & Jinjin Li & Yanfei Zhu, 2025. "Data-driven exploration of weak coordination microenvironment in solid-state electrolyte for safe and energy-dense batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63262-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.